

COMPASS RICH-1 and Novel Gaseous Photon Detectors

Fulvio Tessarotto (I.N.F.N. – Trieste)

COMPASS RICH-1

Vessel, radiator gas and mirror system

MWPC's + Csl photocathodes

The MAPMT based detectors

THGEM-based PD's

The upgrade with THGEM-based PDs

Promising developments in gaseous PD's

Rauischholzhausen, 08/08/2017 - DIRC 2017

Fulvio TESSAROTTO

COMPASS Collaboration

Experiments with muon beam:

Experiments with hadron beams:

COMPASS - I (2002 - 2011)

Spin structure, Gluon polarization Flavor decomposition Transversity Transverse Momentum-dependent PDF

DVCS and HEMP Unpolarized SIDIS and TMDs

TMDs

(2021 – 2022) ...

Transversity, proton radius

Rauischholzhausen, 08/08/2017 - DIRC 2017

Pion polarizability Diffractive and Central production Light meson spectroscopy Baryon spectroscopy

Pion and Kaon polarizabilities Drell-Yan studies

→ (2023 – …) Lol in preparation

Fulvio TESSAROTTO

COMPASS RICH-1

is a large gaseous RICH with three kind of photon detectors providing:

hadron PID from 3 to 60 GeV/c

acceptance: H: 500 mrad V: 400 mrad

trigger rates: up to ~50 KHz beam rates up to ~10⁸ Hz

material in the beam region: 1.2% X_o material in the acceptance: 22% X_o

detector designed in 1996 in operation since 2002 upgraded in 2006 with MAPMTs and newly upgraded in 2016 with hybrid THGEM+Micromegas PDs

total investment: ~ 5 M €

the vessel and the mirror support wall

Large and accurate mechanics light front and rear windows 100 m of O-rings, 80 m³ C4F10

mirrors and alignment

21 m², 116 mirrors radius: 6.6 m

angular regulation screws

measurement of mirror alignment via laser autocollimation

problems with mirrors

risky operations, work load, expenses.

CLAM: mirror alignment monitoring

"CLAM" picture for mirror monitoring

retroreflective

grid

4 cameras

at corners with LED's

accuracy: 30 µrad

photogrammetric calibration of cameras → measurement of absolute mirror tilt

The radiator gas system

ſ ſ 2.69.1 100 100 1000 Marini Success

THE COMPASS RICH1 MONOCHROMATOR AND SONAR

INFN

stituto Nazionale

Problems with the radiator gas

C₄F₁₀ is out of production (\rightarrow new radiator gas: C₄F₈O ?)

It comes dirty (very, very dirty sometimes): pre-cleaning is needed: dedicated system, unavoidable losses, expert manpower

Inserting it into the vessel (and recovering it) is delicate, losses ~ 2%, incomplete (97.5% maximum)

Critical circulation system with feedback to keep $\Delta p < 0.1$ mbar challenged by weather

C₄F₁₀ leaks out (60 l/day): regular refill is needed

It integrates contaminants: some can be accepted (N₂, Ar), others need continuous filtering out (O₂, H₂O) ; the filters have limited capacitance (significant contaminations fill them quickly); regeneration takes several days

Monitoring the transparency is a must (dedicated system, expert manpower, significant gas consumption for each measurement)

Thermal gradients problem: \rightarrow fast circulation (20 m³/h)

Accidents can become disasters; emergency intervention to be granted in short time: EXPERT ON CALL 24 h/day, 7 days/week for 7 months/year: heavy load on experts

RD26: MWPCs +CsI

François Piuz

Fig. 1. The QE of CsI PCs produced at CERN for ALICE and at TUM for HADES, compared to that measured at the W.I.S. on small samples (reference for RD-26). PC32 is one of the four PCs equipping the ALICE-RICH prototype used in STAR at BNL. A Di Mauro NIM A 525 (2004) 172

	A. Di Maulo, I			
Rauiso	chholzhausen,	08/08/2017	-	DIRC 2017

1992, F. Piuz et al. Development of large area advanced fast-RICH detector for particle identification at LHC operated with heavy ions

TO ACHIEVE HIGH CsI QE: Substrate preparation:

Cu clad PCB coated by Ni (7 µm) and Au(0.5 µm), surface cleaning in ultrasonic bath, outgassing at 60 °C for 1 day Slow deposition of 300 nm Csl film:

1 nm/s (by thermal evaporation or e⁻-gun) at a vacuum of ~ 10^{-7} mbar, monitoring of residual gas composition

Thermal treatment:

after deposition at 60 °C for 8 h

Careful Handling:

measurement of PC response, encapsulation under dry Ar, mounting by glove-box.

Schematic structure of the COMPASS Photon Detector:

COMPASS: 8 MWPC's with CsI

The CsI photocathodes

Good performance in low gain configuration

- photons / ring ($\beta \approx 1$, complete ring in acceptance) : **14**
- σ_{θ-ph} (β ≈ 1) : **1.2 mrad**
- σ_{ring} (β ≈ 1) : 0.6 mrad
- $2\sigma \pi$ K separation @ 43 GeV/c
- PID efficiency ~ 95% for θ_{ch} > 30 mrad

except for the very forward region

After a long fight for increasing electrical stability at high m.i.p. rates and systematic studies at the CERN GIF we came to the same conclusion as Ypsilantis and Seguinot:

J. Seguinot et al., NIM A 371 (1996), 64:

CsI-MWPC with 0.5 mm gap to minimize ion collection time, fast front-end electronics (20 ns int. time): stable operation is not possible at 10⁵ gain because of photon feedback, space charge and sparks

COMPASS

limits of MWPC's with CsI in COMPASS

- MWPCs with CsI photocathodes in COMPASS: beam off: stable operation up to > 2300 V beam on: stable operation only up to ~2000 V (in spill→ ph. flux: 0 - 50 kHz/cm², mip flux: ~1 kHz/cm²)
 Whenever a severe discharge happens, recovery takes ~1 day
- 2) Photocathode aging:
 - our information from accidental contamination
 - very detailed study by Alice team

the central region before 2006

THE EXPERIMENTAL ENVIRONMENT huge uncorrelated background related to the memory of the MWPCs + read-out

Accelerated ageing test H. Hoedlmoser et al., NIM A 574 (2007) 28.

Rauischholzhausen, 08/08/2017 - DIRC 2017

MAPMT: HAMAMATSU R7600-03-M16

Digital read-out electronics: DREISAM card

The central part of the lower detector

Rauischholzhausen, 08/08/2017 - DIRC 2017

number of photons and resolutions

INFN

Istituto Nazionale

time resolution is useful for correctly assigning hits to rings

Rauischholzhausen, 08/08/2017 - DIRC 2017

Fulvio TESSAROTTO 24

PID performance and purity of K samples

INFN

Istituto Nazionale di Fisica Nucleare

Precision measurements require not just high efficiency but also very stable response

MWPC + CsI operate at low gain → depend on p, T, threshhold and background stability but we need precise comparison of data with different background levels

Reduction of systematics from photon detectors → <u>larger gain and faster signals</u>

PMTs not adequate because of large angular acceptance → only a small demagnification factor of optical system is allowed (large distortions); 5 m² of PMTs are not affordable.

A dedicated R&D project to develop THGEM-based PDs did choose a hybrid MPGD architecture as the best option.

GAS ELECTRON MULTIPLIER FORMED BY A **RIGID** DIELECTIC FOIL BETWEEN ELECTRODES, PROVIDED WITH A PATTERN OF HOLES.

- In a proper gas and with electric bias it can provide large electron multiplication
- Material: FR4, permaglass, ARLON ...
- PTFE, PET, …
 - glass, PEG3 (etchable glass), ...
 - ceramic

- -
 - Holes: mechanical drilling (1 € per 1000 holes, 30000 hole/h)
 - water jet
 - laser
 - chemical etching
 - preformed (capillary plates)

Rauischholzhausen, 08/08/2017 - DIRC 2017

Classical THGEMs

Standard PCB foil:

robust

- mechanically self supporting
- Iarge size
- industrially produced

Comparing to GEMs:

- Geometrical dimensions X ~10
 - But e⁻ motion/multiplic. properties do not!
 - Larger holes:
 - dipole fields and external fields are strongly coupled
 - e⁻ dispersion plays a minor role

About PCB geometrical dimensions:

Hole diameter	:	0.2 - 3	1 mm
Pitch :		0.4 - 4	4 mm
Thickness :		0.2 - 2	2 mm

introduced in // by different groups: L. Periale et al., NIM A478 (2002) 377. P. Jeanneret, PhD thesis, Neuchatel U., 2001. P.S. Barbeau et al, IEEE NS50 (2003) 1285 **R. Chechik et al, .NIMA 535 (2004) 303**

THGEM +CsI: 8 years of dedicated R&D

The new hybrid THGEM+Micromegas PDs

DIRC 2017

Rauischholzhausen,

08/08/2017

The anodic PCB

Rauischholzhausen, 08/08/2017 - DIRC 2017

Fulvio TESSAROTTO 31

Rauischholzhausen, 08/08/2017 - DIRC 2017

THGEM raw material selection

Our thickness uniformity requirements are stricter than those offered by producers \rightarrow material selection 50 foils of 1245 mm x 1092 mm \rightarrow cut out borders \rightarrow 800 mm x 800 mm \rightarrow thickness measurement

Elite Material Co., Ltd.				Te Materia		
PROD	UCT	00,110	logon noo	EM 37		
Thickness						
Copper						
Sheet Size			1			
Permittivity (RC 50%)	1 MHz	2550	C 24/23/50	-	4.8	
	1 GHz	2.0.0.9	0-24/20/00	-	4.3	
Volume resistivity 2.5.17.1		2.5.17.1	C-96/35/90	MΩ-cm	>1010	
Surface resistivity 2.5		2.5.17.1	C-96/35/90	MΩ	>109	

Mitutoyo EURO CA776

coordinate measuring machine with ruby touch probe, hosted in a thermalized room

Positioning blocks

700 X 700 mm² active area borders underpressure induced flatness

for each foil 36 x 36 points in square pattern are measured 2 measurements (direct and reversed) to allow consistency checks.

Rauischholzhausen,

08/08/2017 -

THGEM quality assessment

field shaping electrodes

▼ -3350

large field values at the chamber edges and on the guard wires

isolating material (Tufnol 6F/45) protection Field shaping electrodes in the isolating material protections of the chamber frames

assembling

Rauischholzhausen, 08/08/2017 - DIRC 2017

Csl coating of THGEMs

Thick GEM 429

Thick GEM 334

Thick GEM 421 re-coating

THGEM

THGEM box

2.44

2.47

2.47

2.98

3.14

2.74

3.00

2.83

19 Csl evaporations performed in 2015 - 2016 on 15 pieces: 11 coated THGEMs available, 8 used + 3 spares **THGEM** number evaporation date at 60 deq. at 25 deg. Thick GEM 319 1/18/2016 2.36 Thick GEM 307 1/25/2016 2.65 Thick GEM 407 2/2/2016 2.14 2.79Thick GEM 418 2/8/2016 Thick GEM 410 2/15/2016 2.86

3.98 3.76 **Reference** piece 7/4/2016 QE measurements indicate an average THGEM QE = 0.73 x Ref. piece QE, in agreement with expectations (THGEM optical transp. = 0.76)

2/22/2016

2/29/2016

3/10/2016

275

2.77

2.61

Rauischholzhausen. 08/08/2017 **DIRC 2017**

Csl THGEM mounting

The new COMPASS PDs

Installation of hybrids on RICH_1

Rauischholzhausen, 08/08/2017 - DIRC 2017

Equipping the hybrids on RICH_1

The PD readout and services

Rauischholzhausen, 08/08/2017 - DIRC 2017

Commissioning and 2016 COMPASS run

HV monitor and control system

Cherenkov signals are clearly seen

- <u>1.4 m² of hybrid PDs operated</u>
- Stable data taking conditions
- Effective suppression of signals from charged particles
- <u>Ion Back-Flow < 3%</u>
- More Cherenkov photons seen with respect to MWPCs + Csl

DIRC 2017

200

300

400

PulseHeight [AdcUnit=300e]

Fulvio TESSAROTTO 47

600

-015

kV/cm

measurement: 3% nicely matches the expectation

Rauischholzhausen, 08/08/2017 - DIRC 2017

The result of the direct

IBF to photocathode (meas. in lab.)

Trieste home-built picoammeters

GASEOUS DETECTORS FOR VISIBLE LIGHT

Gaseous PMT Yamagata U. TMU, HAMAMATSU

Sensor type	Sensitivity	Position Resolution	Timing Resolution	Uniformity	Price	Magnetic Field	Effective Area
Vacuum PMT	0	Δ	0	Δ	0	Δ	0
CCD / CMOS	Δ	0	×	0	Δ	0	×
Gaseous PMT	0	0	0	0	0	0	0

The advantage of the gaseous PMT:

✓ It can achieve a very large effective area with moderate position and timing resolutions.

withcan be easily operated under a very high magnetic field.

Ar(90%)+CH4(10%) 1気圧

Fulvio TESSAROTTO

GRAPHENE

P. Thuiner^{1,2}, R. Hall-Wilton³, R. B. Jackman⁴, H. Müller¹, T. T. Nguyen⁴, R. de Oliveira¹, E. Oliveri¹, D. Pfeiffer^{1,3}, F. Resnati¹, L. Ropelewski¹, J. A. Smith⁴, M. van Stenis¹, R. Veenhof⁵

¹CERN, ²Technische Universität Wien, ³ESS, ⁴University College London, ⁵Uludağ University

<u>Promising new idea</u>

Rauischholzhausen, 08/08/2017 **DIRC 2017**

Fulvio TESSAROTTO 51

M.Chefdeville et al., Nucl. Instrum. Meth. A 556 (2006) 490.

Y.Bilevych et al., Nucl. Instrum. Meth. A 610 (2009) 644.

Excellent space resolution for single UV photons provided by InGrid with CsI coating of a micro-grid directly integrated by wafer post-processing production onto a CMOS pixel detector with the complete readout system.

The array of microgrid round holes corresponds to the array of CMOS pixel centers

10⁹ Ω cm resistive plate → discharge free operations. 99% eff. up to ~ 10⁵ Hz/cm² proposed for digital hadron calorimetry

L. Moleri et al.,NIMA 845 (2017) 262

proposed for UV photon detection

S. Bressler et al. JINST July 2013	arXiv:1305.4657
L. Arazi et al. 2012 JINST 7 C05011	arXiv:1112.1915

Bubble-assisted electroluminescence in LXe

A "local dual-phase" noble-liquid detector

, 2017

Fulvio TESSAROTTO

Scintillating Glass-GEM imager

55

INFN

Istituto Nazionale

"picosecond" timing with MPGDs?

Charged particle

Many configuration tested

T.Papaevangelou et al, Fast Timing for High-Rate Environments with Micromegas, arXiv:1601.00123 (Jan. 2016).

Presentation by Sebastian

White at NDIP 2017

Successfully achieved ~35 ps resolution in test beam.

Puzzling shift in spite of CF.

tPICOSEC-tMCP

NEW !!!

Photocatodes: diamond film obtained with Spray Technique

Spray technique: T ~ 120° (instead of ~800° as in standard techniques)

SUMMARY / CONCLUSIONS

- COMPASS RICH-1
 - Provides outstanding PID performance
 - Has progressively improved and undergone two major upgrades
- MPGD-BASED PHOTON DETECTORS
 - Allow to overcome the limitations of MWPC-based PDs
 - A wide effort has refined and consolidated the THGEM technology
- Hybrid THGEM + Micromegas PDs
 - Have been implemented on COMPASS RICH-1 in 2016 for 1.4 m²
 - They provide efficient single UV photon detection
- GASEOUS PDs are expected to allow
 - Inventions: new ideas, new techniques
 - Technology consolidation, new applications
 - Large scale projects