

The MPGD-Based Photon Detectors

for the upgrade of COMPASS RICH-1

and beyond

S. Dalla Torre

INFN - TRIESTE

on behalf of the COMPASS RICH group

Pisa Meeting 2018

MPGD-based photon detectors

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA TORRE

PHOTON DETECTORS so far

Reduced wire-cathode gap because of :

- Fast RICH (fast ion collection)
- Reduced MIP signal
- Reduced cluster size
- Control photon feedback spread

MWPCs with CsI	photocathode,	the
<u>limitations</u>	•	

Severe recovery time (~ 1 d) after a detector discharge

- Ion accumulation at the photocathode
- Feedback pulses

- <u>Ion and photons feedback</u> from the multiplication process
- Ageing (QE reduction) after integrating a few mC / cm²
 - <u>Ion bombardment</u> of the photocathode
- → Low gain: a few times 10⁴ (effective gain: <1/2)
- → "slow" detector

MPGDs

To overcome the limitations:

- Less critical architecture
- suppress the PHOTON & ION feedback
- use intrinsically faster detectors

Pisa Meeting 2018

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA

COMPONENT QA in a nutshell

Measurement of the raw material thickness before the THGEM Production, accepted: \pm 15 µm \leftrightarrow gain uniformity σ < 7%

THGEM polishing with an "ad hoc" protocol setup by us: >90% break-down limit obtained

X-ray MM test to access integrity and gain uniformity (<5%)

Pisa Meeting 2018

MPGD-based photon detectors

CsI coating for THGEMS

QE uniformity

- 3 % r.m.s. within a photocathode
- 10 % r.m.s. among photocathodes
- mean value: 93% of reference

Pisa Meeting 2018

MPGD-based photon detectors

318.00

1263.3

CageTop : 3330 V. 0.000 uA

QualityFactors:: Recent: 0. Former: 0. Daily: 0

UT1Bot UT2Top UT2Bot

2111.3

1793.37

530.00

2111 06

1793.07

529.96 631.79

2.628

0.000 uA. 0 Sp

HV CONTROL

In total 136 HV channels with correlated values

- Gain stability vs P, T:
 - G = G(V, T/P)
 - Enhanced in a multistage detector
 - $\Delta T = 1^{\circ}C \rightarrow \Delta G \approx 12 \%$
 - $\Lambda P = 5 \text{ mbar} \rightarrow \Lambda G \approx 18 \%$

THE WAY OUT:

Compensate T/P variations by V → Gain stability at 5% level

Regular updates [s] : 10 Undate

3517 V. 0.002 uA. 0 SpF

Status: OnState : 0. ScaleSet: 105%.

ETrans2 UMesh

MAIN DETECTOR FIGURES

- Current sparks in THGEMs
 - Rate < 1/h per detector
 - Recovery time: ~ 10 s
 - Fully correlated between the two layers
 - Mild dependence on beam intensity
- Current sparks in MICROMEGAS
 - Induced by THGEMs
 - Recovery time: ~1 s
- Ion backflow: ~ 3% level
- Noise: 900 electron equivalent (r.m.s.)
 - Channel C : 4pF

RINGS !!!

INTRINSIC SPACE RESOLUTION

Residual distribution for individual photons (preliminary π -sample):

Pisa Meeting 2018

MPGD-based photon detectors

DETECTED PHOTONS per RING

DETECTED PHOTONS per RING

<u>h-PID at high p</u> (> 6-8 GeV/c)

- Required for physics at the future ELECTRON-ION COLLIDER (EIC)
- Collider-specific issues
 - shorter radiator to control setup sizes (advantages also for fixed target) namely more detected photons per unit radiator length
 - → increased resolution
 - Operation in magnetic field
- An interesting option
 - Exploit the extremely far VUV region (~120 nm) with a windowless RICH and gaseous photon detectors, test beam @ Fermilab

IEEE NS 62 (2015) 3256

A VERY RECENT NEW OPTION FOR THE R&D

SUMMARIZING ...

MPGD-based photon detectors ACCOMPLISH THEIR MISSION in COMPASS RICH-1

 From preliminary characterization exercises: stable gain, large gain, good number of detected photoelectrons

- Technological achievement for the FIRST TIME:
 - single photon detection is accomplished by MPGDs
 - THGEMs used in an experiment
 - MPGD gain > 10k in an experiment

MPGD-based photon detectors have a mission in the future of hadron physics

THANK YOU

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA TORRE

MORE INFORMATION

MPGD-based photon detectors

HANDLING THE VUV DOMAIN

Pisa Meeting 2018

MPGD-based photon detectors

20

OUR THGEM DESIGN

Pisa Meeting 2018

MPGD-based photon detectors

FIELD SHAPING ELECTRODES AT THE EDGES

large field values at the chamber edges and on the guard wires

isolating material (Tufnol 6F/45) protection Field shaping electrodes in the isolating material protections of the chamber frames

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA TORRE

THE PHOTOELECTRON SIGNAL

Pisa Meeting 2018

MPGD-based photon detectors

ELECTRICAL STABILITY

THGEMs, lessons

- <u>Full</u> vertical <u>correlation</u> of current sparks THGEM1 & THGEM2
- Recovery time <10 s (our HV arrangement)
- Sparke rates: ~ no dependence on beam intensity and even beam on-off
- <u>Discharge correlation</u> within a THGEM (also non adjacent segments) and among different THGEMs (cosmics ?)
- Total spark rates (4 detectors): ~10/h

MICROMEGAS, lessons

- MM sparks only when a THGEM spark is observed (not vice versa)
- Recovery time ~1s (our HV arrangement)
- The only real issue: dying channels (pads)
 - Local shorts, larger current, no noise issue
 - 2.5 ‰ developed in 12 months
 - Dirty gas / dust from molecular sieves & catalyst?

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA TORRE

CONSTRUCTION & ASSEMBLY

Complex mechanics

Glueing the support pillars

Pisa Meeting 2018

27

ASSEMBLY in a nutshell

final assembly of the active module assembly with CsI in glovebox

Onto the RICH

glovebox also to mount the active module onto the RICH

Silvia DALLA TORRE

Pisa Meeting 2018

CSI QE measurements at coating

19 Csl evaporations performed in 2015 - 2016 on 15 pieces: 13 THGEMs, 1 dummy THGEM, and 1 reference piece (best from previous coatings)

11 coated THGEMs available, 8 used + 3 spares

THGEM number		evaporation date	at 60 degrees	at 25 degrees
Thick GEM 319		1/18/2016	2.36	2.44
Thick GEM 307		1/25/2016	2.65	2.47
Thick GEM 407		2/2/2016	2.14	2.47
Thick GEM 418		2/8/2016	2.79	2.98
Thick GEM 410		2/15/2016	2.86	3.14
Thick GEM 429		2/22/2016	2.75	2.74
Thick GEM 334		2/29/2016	2.77	3.00
Thick GEM 421 re-co	pating	3/10/2016	2.61	2.83
Reference piece		7/4/2016	3.98	3.76

indicate <THGEM QE> = 0.73 x Ref. pieceQE with s.r.m. of 10%

QE measurements

in agreement with expectations (THGEM optical opacity = 0.78)

MPGD-based photon detectors

CONSTRUCTION & ASSEMBLY

Complex and precise mechanics

glovebox also to mount the active module onto the RICH

Machine controlled glue-dispenser

Including photocathode in glovebox

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA TORRE

READ-OUT and SERVICES

read-out : already available for the MWPCs with Csl

FE chip APV25

LV supply

Gas lines

P, T sensors

