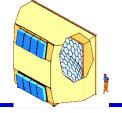


The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond

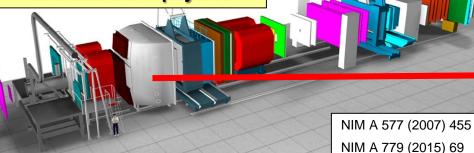
S. Dalla Torre

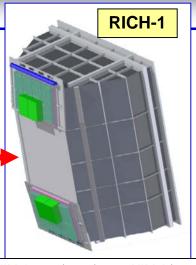
on behalf of the COMPASS RICH group

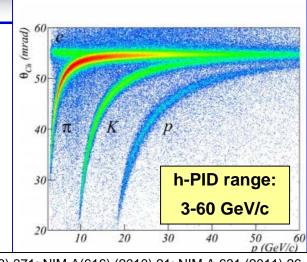


OUTLINE

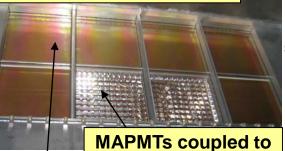
The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond


- The context
- Why MPGD-based photon detectors ?
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints
- Beyond the application at COMPASS





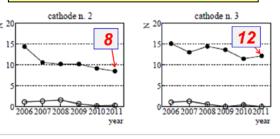
COMPASS RICH-1

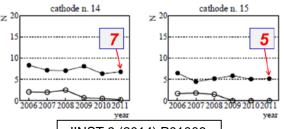


NIM A 553 (2005) 215; NIM A(2008) 371; NIM A(616) (2010) 21; NIM A 631 (2011) 26

Al vessel

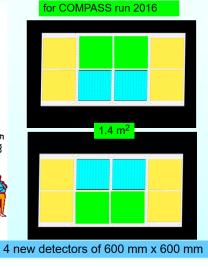
Top photon detectors

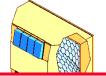



lens telescopes

MWPCs+CsI (from RD26):

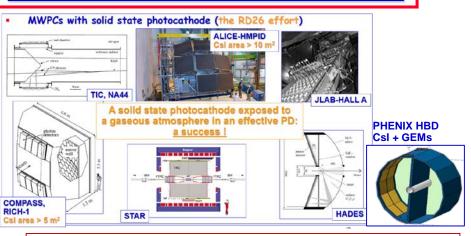
successful but performance limitations, in particular for the 4 central chambers





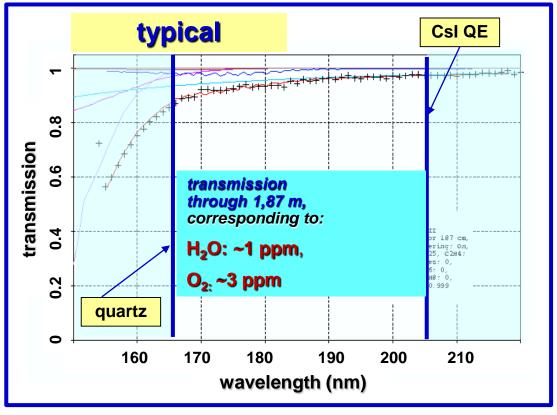
MWPC's →MPGD-based PDs **UV** mirror 5 m PMTs beam pipe radiator gas: C₄F₁₀ MWPC's → MPGD-based PDs

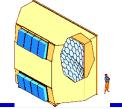
Silvia DALLA TORRE



JINST 9 (2014) P01006

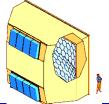
HANDLING THE VUV DOMAIN


Csl gasous sensors used in several Cherenkov detectors

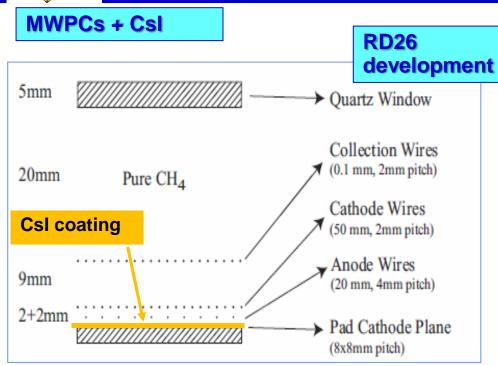


COMPASS RICH-1, gas transparency

- -gas cleaning by on-line filters,
- -separate functions:
 - -Cu catalyst, ~ 40°C for O₂
 - -5A molecular sieve, $\sim 10^{\bar{0}}$ C for H₂O



OUTLINE

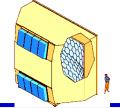

The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond

- The context
- Why MPGD-based photon detectors ?
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints
- Beyond the application at COMPASS

PHOTON DETECTORS so far

Reduced wire-cathode gap because of:

- Fast RICH (fast ion collection)
- Reduced MIP signal
- Reduced cluster size
- Control photon feedback spread

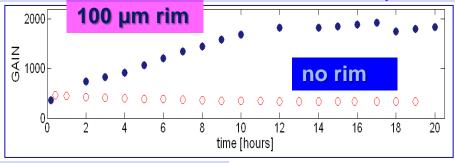

MWPCs with CsI photocathode, the limitations

- Severe recovery time (~ 1 d) after a detector discharge
 - Ion accumulation at the photocathode
- Feedback pulses
 - Ion and photons feedback from the multiplication process
- Ageing (QE reduction) after integrating a few mC / cm²
 - Ion bombardment of the photocathode
- → Low gain: a few times 10⁴ (effective gain: <1/2)
- > "slow" detector

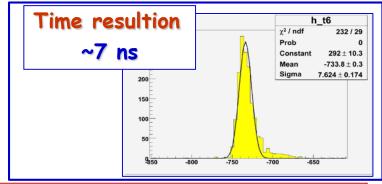
To overcome the limitations:

- Less critical architecture
- suppress the PHOTON & ION feedback
- use intrinsically faster detectors
- → MPGDs

OUTLINE

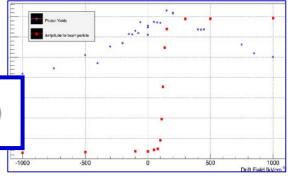

The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond

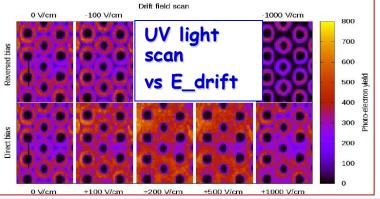
- The context
- Why MPGD-based photon detectors ?
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints
- Beyond the application at COMPASS



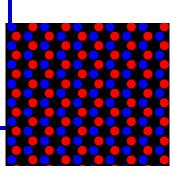
After 7 years of R&D

THGEM characterization, performance

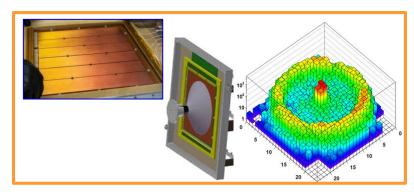




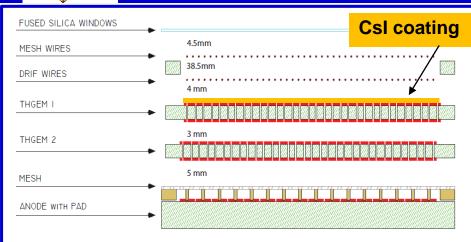
Photoelectron extraction

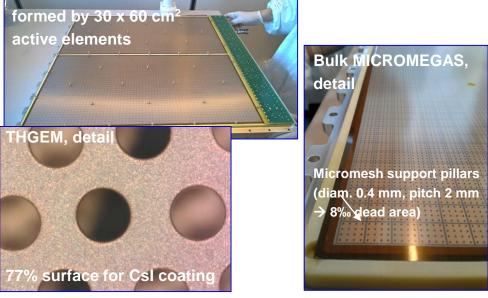


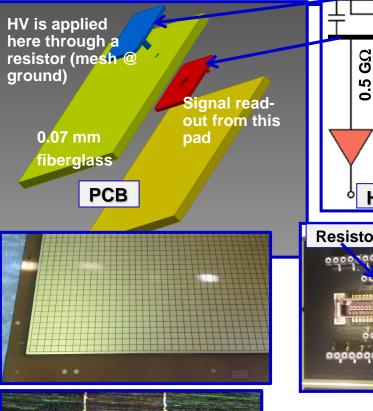
IBF (Ion Back Flow) suppression

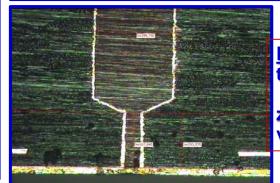

Tripple THGEM: IBF suppression (<5%) by staggering plates

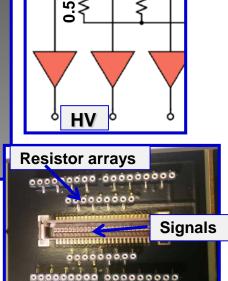
IBF suppression
(<3%) introducing a
MM stage:
no need of high
Transfer electric field

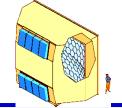

Hybrid architecture


Cherenkov light detection in TB



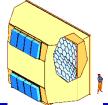

60 x 60 cm² detector


DETECTOR ARCHITECTURE



<u>Planar surface issue</u> at the pad:

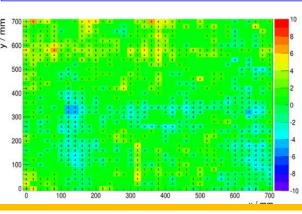
z drilling controlled via (3D-drilling)

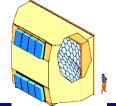


OUTLINE

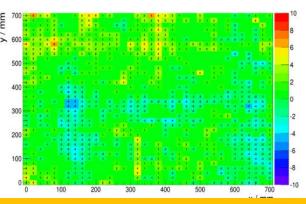
The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond

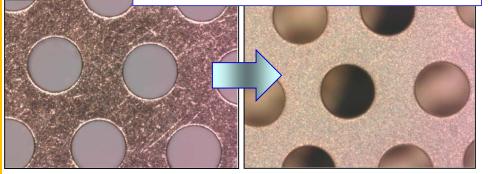
- The context
- Why MPGD-based photon detectors ?
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints
- Beyond the application at COMPASS

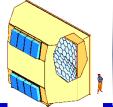




Measurement of the raw material thickness before the THGEM production, accepted:

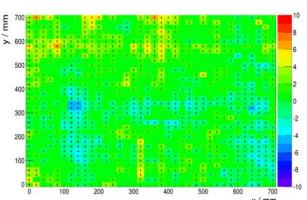

 \pm 15 μm \leftrightarrow gain uniformity σ < 7%

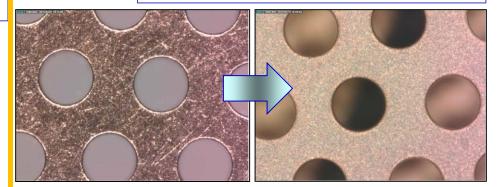




Measurement of the raw material thickness before the THGEM production, accepted: \pm 15 μ m \leftrightarrow gain uniformity σ < 7%

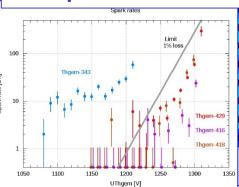
THGEM polishing with an "ad hoc" protocol setup by us *including backing*: >90% break-down limit obtained



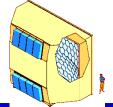


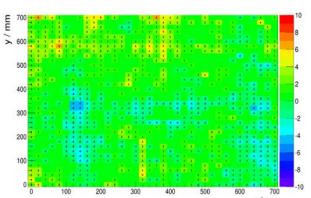
Measurement of the raw material thickness before the THGEM production, accepted:

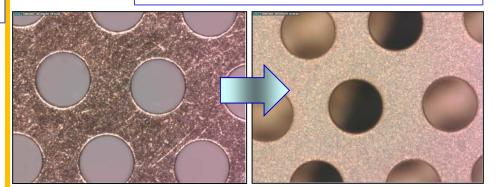
± 15 μm \leftrightarrow gain uniformity σ < 7%



THGEM polishing with an "ad hoc" protocol setup by us: >90% break-down limit obtained

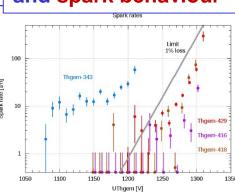



23	207	206	198	185	202	88
23	207	199	198	196	207	96
22	204	204	198	193		92
22	205	202	199	188		92
21		195	195	191	199	199
21	199	195	205	199	196	199
20	194	195	197	194	190	192
20	199	195	209	195	190	198
19	201	197	208	195	199	198
19	199	200	199	195	199	198
18	199	190	199	185	186	190
-10						

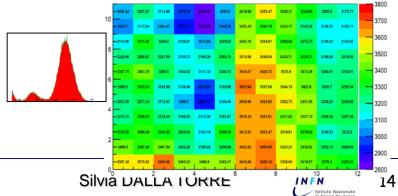


Measurement of the raw material thickness before the THGEM Production, accepted:

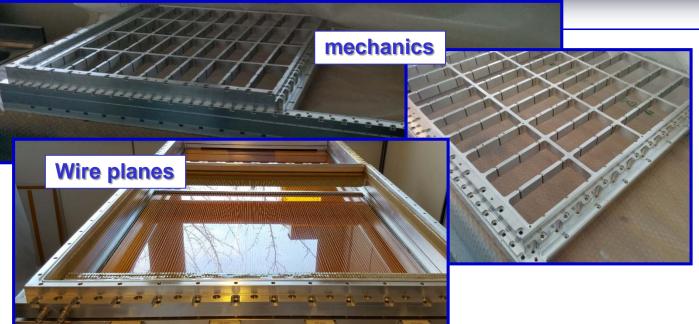
± 15 μ m ↔ gain uniformity σ < 7%

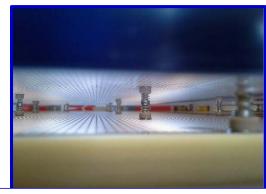


THGEM polishing with an "ad hoc" protocol setup by us: >90% break-down limit obtained

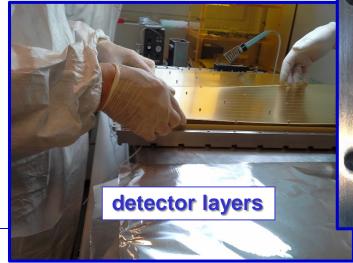


X-ray THGEM test to access gain uniformity (<7%) and spark behaviour

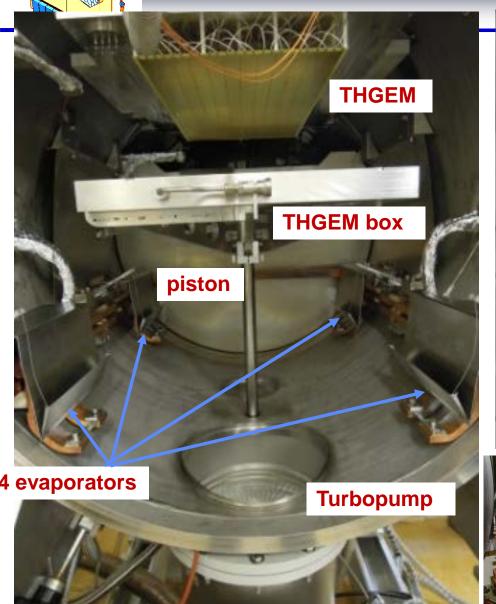

X-ray MM test to access integrity and gain uniformity (<5%)

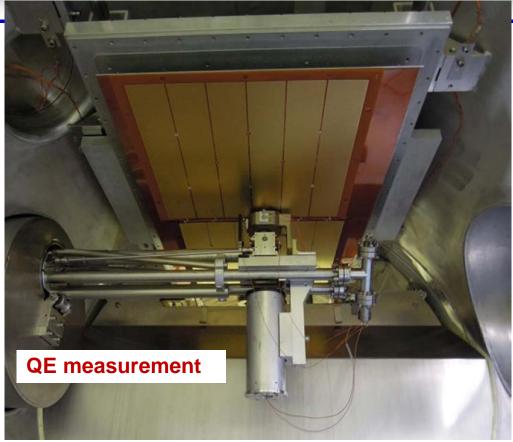


MPGD-based photon detectors

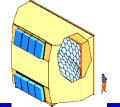

CONSTRUCTION in a nutshell

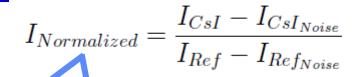
Glueing the support pillars





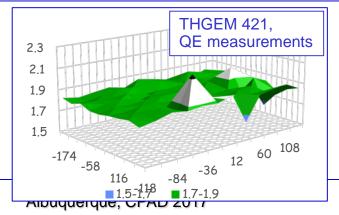
Albuquerque, CPAD 2017


CsI coating for THGEMS



CsI QE measurements at coating

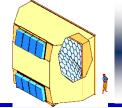
19 Csl evaporations performed in 2015 - 2016 on 15 pieces: 13 THGEMs, 1 dummy THGEM, and 1 reference piece (best from previous coatings)


11 coated THGEMs available, 8 used + 3 spares

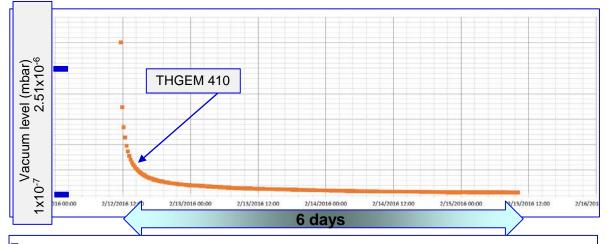
Ti coated indexis available, 8 used + 3 spares								
evap	oration date	at 60 degrees	at 25 degrees					
	1/18/2016	2.36	2.44					
	1/25/2016	2.65	2.47					
	2/2/2016	2.14	2.47					
	2/8/2016	2.79	2.98					
	2/15/2016	2.86	3.14					
	2/22/2016	2.75	2.74					
	2/29/2016	2.77	3.00					
ating	3/10/2016	2.61	2.83					
•	7/4/2016	3.98	3.76					
	evap	evaporation date 1/18/2016 1/25/2016 2/2/2016 2/8/2016 2/15/2016 2/22/2016 2/29/2016	evaporation date at 60 degrees 1/18/2016 2.36 1/25/2016 2.65 2/2/2016 2.14 2/8/2016 2.79 2/15/2016 2.86 2/22/2016 2.75 2/29/2016 2.77 ating 3/10/2016 2.61					

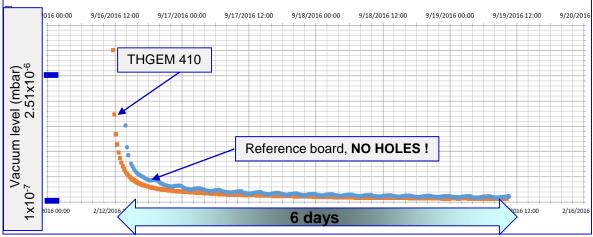
QE measurements indicate

<THGEM QE> = 0.73 x Ref. pieceQE with s.r.m. of 10%


in agreement with expectations (THGEM optical opacity = 0.77)

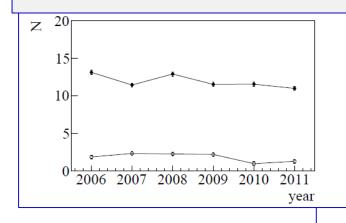
QE is the result of a surface scan (12 x 9 grid, 108 measurements)

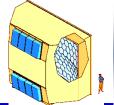

Good uniformity, in the example


 σ_{QE} / $\langle QE \rangle = 3\%$

THGEM OUTGASSING: is it an ISSUE?

Vacuum level while preparing for CsI Coating



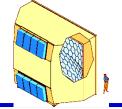


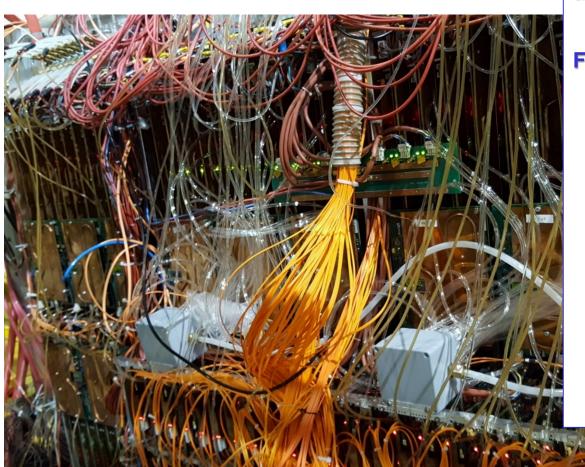
From the experience of CsI-MWPCs

"... The data do not indicate any severe ageing effect: globally they are compatible with the hypothesis of no QE variation and suggest a maximum QE decrease rate of 2.3% per year."

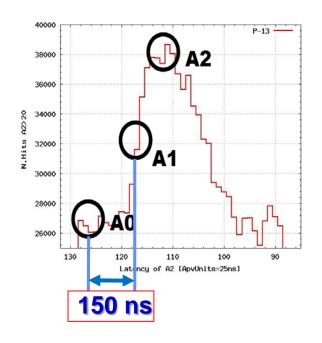
JINST 9 (2014) P01006

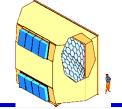
ASSEMBLY in a nutshell


final assembly of the active module assembly with CsI in glovebox


Onto the RICH

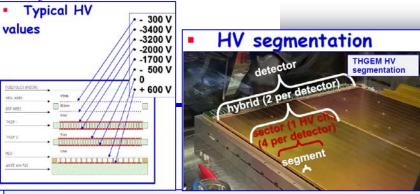
glovebox also to mount the active module onto the RICH




READ-OUT and SERVICES

read-out : already available for the MWPCs with Csl

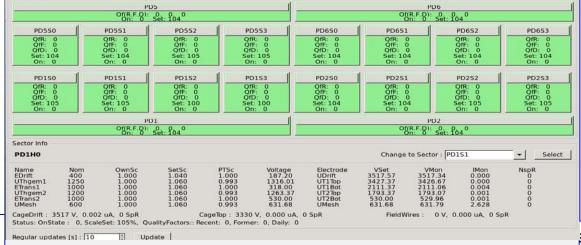
FE chip APV25



OUTLINE

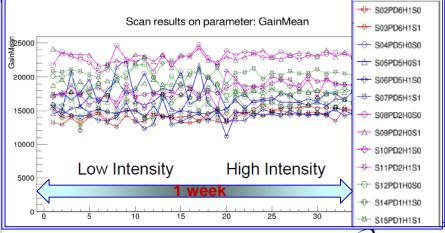
The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond

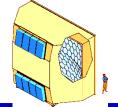
- The context
- Why MPGD-based photon detectors ?
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints
- Beyond the application at COMPASS


HV CONTROL

In total 136 HV channels with correlated values

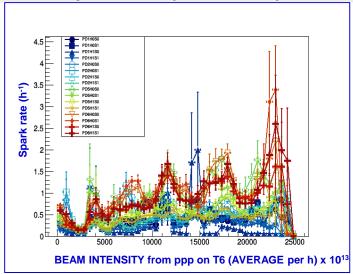
- Hardware, commercial by CAEN
- HV control


HV Status

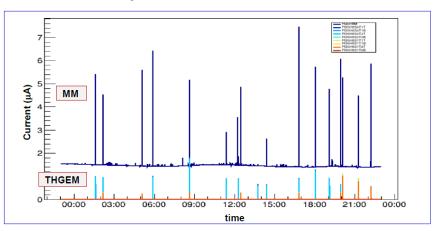

- Custom-made (C++, wxWidgets)
- Compliant with COMPASS DCS (slow control)
- "OwnScale" to fine-tune for gain uniformity
- V, I measured and logged at 1 Hz
- Autodecrease HV if needed (too high spark-rate)
- User interaction via GUI
- Correction wrt P/T to preserve gain stability

Gain stability vs P, T:

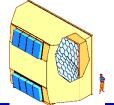
- G = G(V, T/P)
- Enhanced in a multistage detector
- $\Delta T = 1^{\circ}C \rightarrow \Delta G \approx 12 \%$
- Δ P = 5 mbar \rightarrow Δ G ≈ 18 %
- THE WAY OUT:
 - Compensate T/P variations by V
 - → Gain stability better than 10%



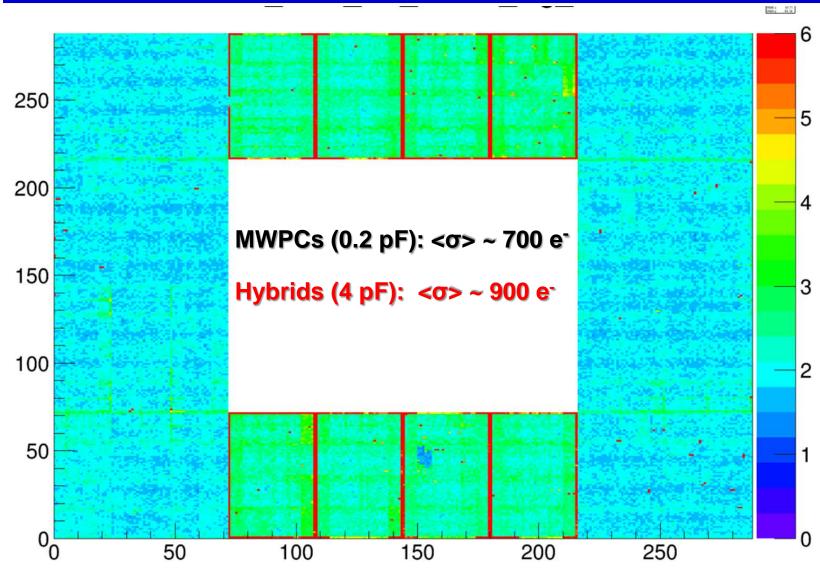
ELECTRICAL STABILITY

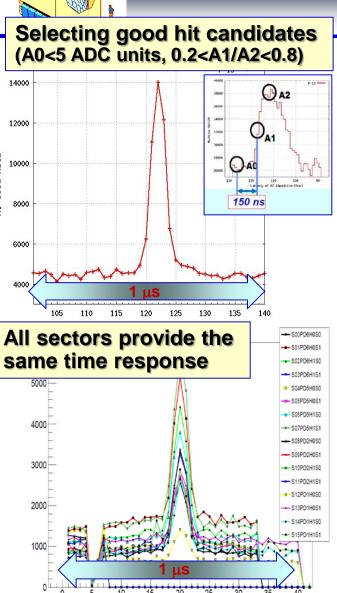

THGEMs, lessons

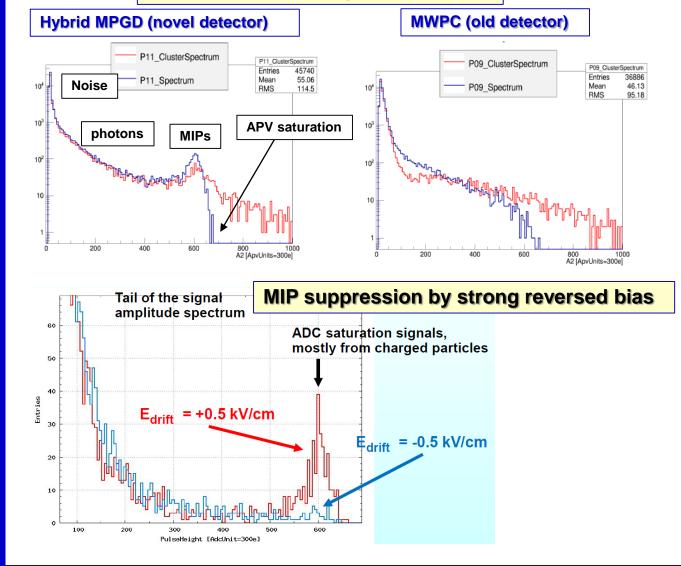
- <u>Full</u> vertical <u>correlation</u> of current sparks THGEM1 & THGEM2
- Recovery time <10 s (our HV arrangement)
- Sparke rates: ~ no dependence on beam intensity and even beam on-off
- <u>Discharge correlation</u> within a THGEM (also non adjacent segments) and among different THGEMs (cosmics ?)
- Total spark rates (4 detectors): ~10/h

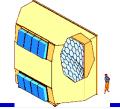


MICROMEGAS, lessons


- MM sparks only when a THGEM spark is observed (not vice versa)
- Recovery time ~1s (our HV arrangement)
- The only real issue: dying channels (pads)
 - Local shorts, larger current, no noise issue
 - 2.5 ‰ developed in 12 months
 - Dirty gas / dust from molecular sieves & catalyst?
 - Finer mechanical filters added: 7 μm pore

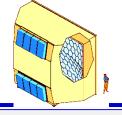



NOISE FIGURES



THE PHOTOELECTRON SIGNAL

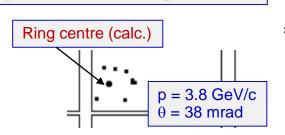
Clusterization to separate MIPs

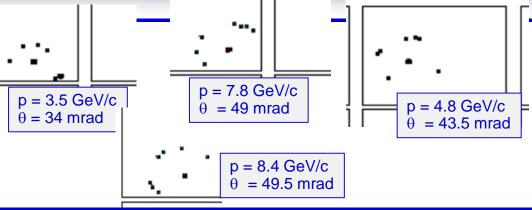


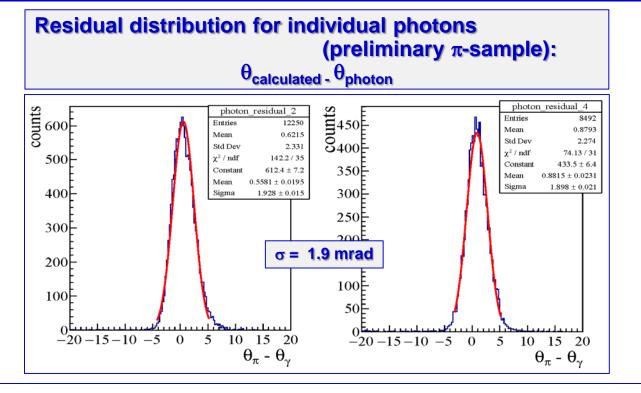
OUTLINE

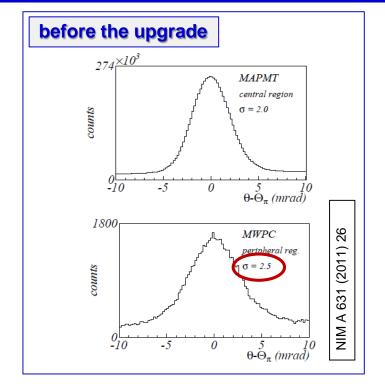
The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond

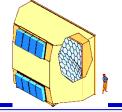
- The context
- Why MPGD-based photon detectors ?
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints
- Beyond the application at COMPASS

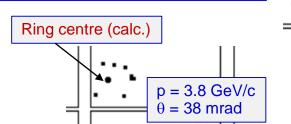



NOVEL PHOTON DETECTOR CHARACTERIZATION ON-GOING


Correlation between photons and trajectories

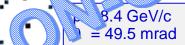

For reference:

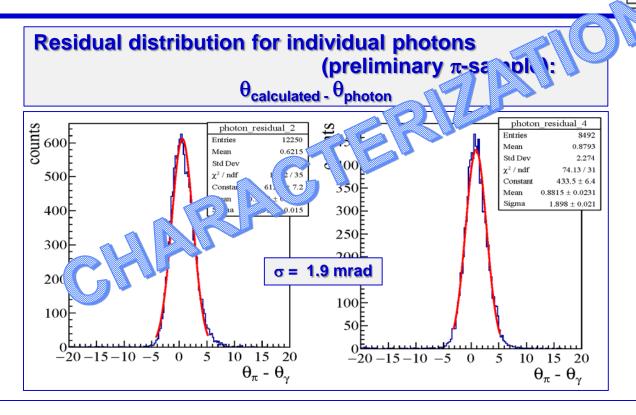

 θ (β = 1) = 52.5 mrad

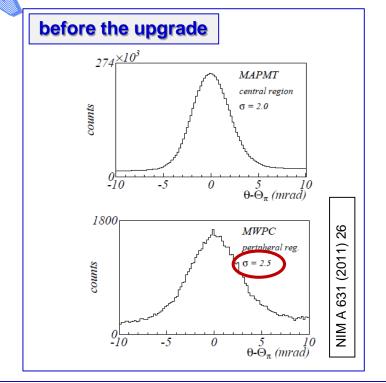


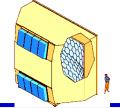
NOVEL PHOTON DETECTOR CHARACTERIZATION ON-GOING

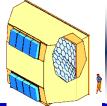
Correlation between photons and trajectories


For reference:


 θ (β = 1) = 52.5 mrad







OUTLINE

The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond

- The context
- Why MPGD-based photon detectors ?
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints
- Beyond the application at COMPASS

STATUS & PERSPECTIVES OF h-PID

Low **p** (< 5-6 GeV/c, higher ?)

Options

Proximity focusing RICHes using

- C₆F₁₄ (or analogous)
- aerogel

DIRC & derived detectors

~O(10ps)

- **Alternative approaches**
 - New **TOF** perspectives
 - Improved dE/dx by cluster counting in gas
- Progress related to numerous new projects:
 - Belle-II barrel
 - Belle-II forward
 - CLAS12
 - GlueX
 - Panda barrel
 - Panda end-caps
 - Panda forward
 - LHCb-Torch

List from RICH2016

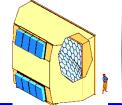
High p (> 1-4 GeV/c)

- **Option**
 - Focusing RICHes with extended gaseous radiator
- **Presently only 3 running high-p RICHes:**
 - LHCb (2-counter system)
 - NA62 (non h-PID!)
 - **COMPASS**, upgraded : novel MPGD-based PDs
- **Further future projects:**

h physics needs

Only EIC

- Can the radiator be "thinner" to avoid gigantic sizes: (advantages for colliders, also for fixed target)?
 - namely more detected photons per unit radiator length
- proposed so far
 - P > 1 atm, proposal for ALICE HMPID upgrade, than abandoned
 - **Exploit the VUV region with a**


gaseous PDs

windowless RICH, testbeam @ Fermilab

IEEE NS 62 (2015) 3256

Use vacuum-based (visible light) photon detectors

MPGD-based PHOTON DETECTOR MISSION IN RICH SECTOR

Sensors used and foreseen in RICH counters in experiments:

- vacuum-based detectors
- gaseous detectors

Time resolution (σ)

- PMTs, MAPMTs >/~ 0.3 ns
- MCP-PMT <50 ps
- MWPCs >/~ 400 ns
- MPGDs ~ 7-10 ns

Effective QE range

Vacuum-based devices:

 λ > 300, 250, 200 nm [also solar-blind]

Gaseous devices (CsI): λ < 205 nm

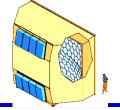
Operation in magnetic field

PMTs, MAPMTs,

HPMTs NO

MCP-PMT, MWPCs,
MPGDs YES

COSTS


- Gaseous \$ (0.3-0.6 M / m²)
- MAPMTs \$\$ (0.8-1.2 M / m²)
- MCP-PMT \$\$\$ (???)

MPGD-based PDs:

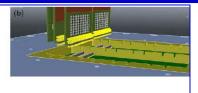
match well the requirements of RICHes for h-PID at high p

(gas radiator, large phase-space

acceptance)

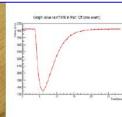
MOVING FURTHER WITH MPGD-based PDs

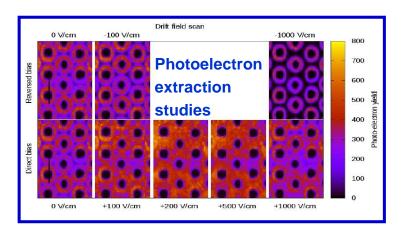
In the frame of

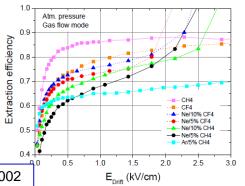

- Generic R&D for EIC eRD6
- INFN RD_FA

resistive MM
with small
pad size
O(10 mm²)

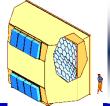
ALREADY ON GOING


PCB





GEM vs THGEM as photocathodes


Issues related to hybrid MPGD-based PDs operated in C-F atmosphere:

- photoelectron extraction
- detector gain
- ageing

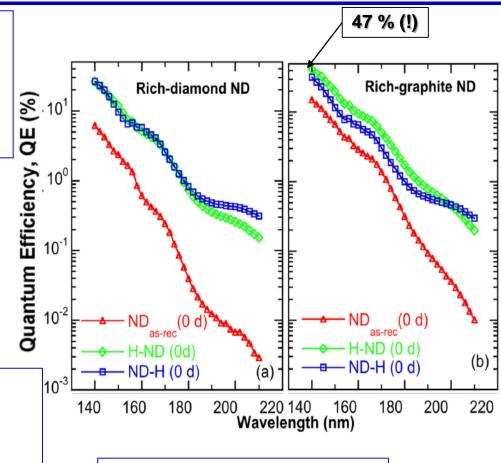
C. D. R. Azevedo et al., 2010 *JINST* 5 P01002

MPGD-based ph

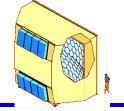
A VERY RECENT NEW OPTION FOR THE R&D

Csl, the only standard photoconverter compatible with gaseous atmospheres, has problematic issues, main ones:

- It does not tolerate exposure to air (H₂O vapour, O₂)
- Ageing by ion bombardment

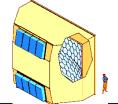

Antonio Valentini et al. – INFN Bari Italian patent application n. 102015000053374

- Photocatodes: diamon film obtained with Spray Technique making use of hydrogenized ND powder
 - Spray technique: T ~ 120° (instead of >800° as in standard techniques)


Coupling of ND photoconverter and MPGDs?

an exiting perspective with several open questions

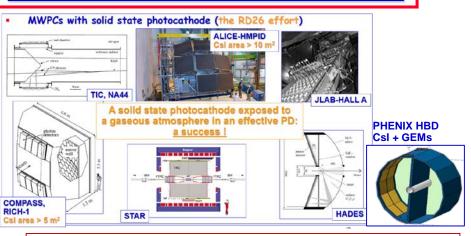
- Compatibility, performance with gas ?
- Radiation hardness ?
- Ageing ?

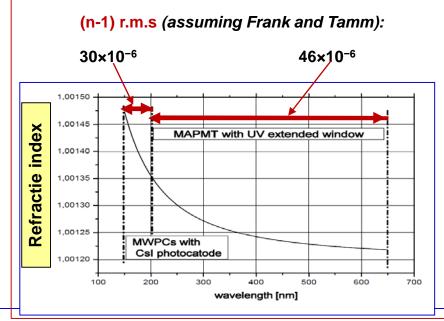

L.Velardi, A.Valentini, G.Cicala al., Diamond & Related Materials 76 (2017) 1

SUMMARIZING ...

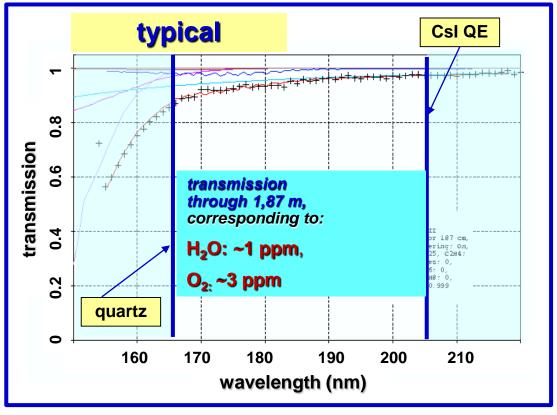
 COMPASS RICH-1 is the <u>first RICH</u> where <u>single photon detection</u> is accomplished by MPGDs

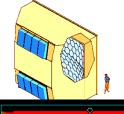
MPGD-based photon detectors have a <u>mission</u> in the future of hadron physics




BACK-UP

HANDLING THE VUV DOMAIN


Csl gasous sensors used in several Cherenkov detectors

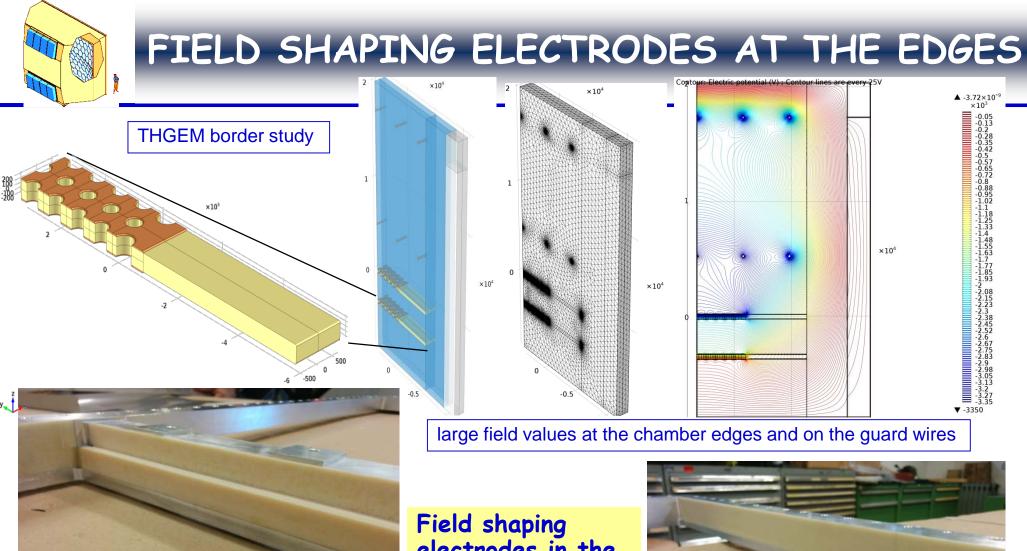


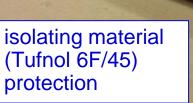
COMPASS RICH-1, gas transparency

- -gas cleaning by on-line filters,
- -separate functions:
 - -Cu catalyst, ~ 40°C for O₂
 - -5A molecular sieve, ~ 10°C for H₂O

OUR THGEM DESIGN

Thickness: 0.4 mm, hole diameter: 0.4 mm, pitch: 0.8 mm


12 sectors on both top and bottom, 0.7 mm separation


24 fixation points to guarantee THGEMs flatness

two THGEMs side by side to form the 60 x 60 cm² surface

border holes diam.: 0.5 mm

pillars in PEEK

Field shaping electrodes in the isolating material protections of the chamber frames

