Performance study of COMPASS RICH-1 detector with 2016-17 physics data and R&D for future EIC RICH

Second year-end presentation

Candidate: Chandradoy Chatterjee

Supervisor: Fulvio Tessarotto

Co-Supervisor: Silvia Dalla Torre

Istituto Nazionale di Fisica Nucleare

Outline

- □ Introduction to COMPASS
- □ Fundamental physics COMPASS addresses
- □ The physics motivation
- Analysis
 - □ RICH performance
 - Characterization of Newly installed hybrids.
- □ R&D for a future Electron Ion Collider (EIC) RICH.
- Conclusion and future Plans.

Introduction to COMPASS

COMPASS is a high-energy physics experiment at the Super Proton Synchrotron (SPS) at CERN in Geneva, Switzerland. The purpose of this experiment is the study of hadron structure and hadron spectroscopy with high intensity muon and hadron beams.

second year-end presentation

detectors.

RICH Front view. (beam direction inside the page) 9/1/2021

Mesh

Anode

Fundamental physics goals of COMPASS

With a collaboration of 250 Physicists:24 institutes:13 countries COMPASS addresses many fundamental questions of particle physics.

Measurements with muon beam:	Measurements with hadron beams:		
COMPASS - I (2002 – 2011)			
Spin Structure, Gluon Polarization	Pion Polarizability		
Flavor Decomposition	Diffractive and Central Production		
Transversity	Light Meson Spectroscopy		
Transverse Momentum Dependent PDFs	Baryon Spectroscopy		
COMPASS - II (2012 – 2018)			
DVCS and DVMP	Pion and Kaon Polarizabilities		
Unpolarized SIDIS and TMDs	Drell-Yan Studies		
Approval of one more year running (2021) with deuteron target for SIDIS physics. Proposal for measuring proton radius by muon- proton scattering.			

Fundamental physics goals of COMPASS

With a collaboration of 250 Physicists:24 institutes:13 countries COMPASS addresses many fundamental questions of particle physics.

Measurements with muon beam:	Measurements with hadron beams:		
COMPASS - I (2002 – 2011)			
Spin Structure, Gluon Polarization	Pion Polarizability		
Flavor Decomposition	Diffractive and Central Production		
Transversity	Light Meson Spectroscopy		
Transverse Momentum Dependent PDFs	Baryon Spectroscopy		
COMPASS - II (2012 – 2018)			
DVCS and DVMP	Pion and Kaon Polarizabilities		
Unpolarized SIDIS and TMDs	Drell-Yan Studies		

Approval of one more year running (2021) with deuteron target for SIDIS physics. Proposal for measuring proton radius by muonproton scattering.

Evolution of our understanding of nucleon structure

The **unpolarized** quark density in **unpolarized** nucleon and **longitudinally** polarized quark density in **longitudinally** polarized nucleon **are not sufficient!! TRANSVERSITY** is a fundamental quantity of nucleons. **Semi Inclusive DIS** is applied to extract the distribution functions.

Physics motivation to use a RICH

Semi-Inclusive DIS

Interpretation of SIDIS the data in context of the perturbative Quantum Chromodynamics (small α_s) \rightarrow Extraction of fragmentation function D_q^i (Non Perturbative object).

(In leading order (LO) the QCD F.F. describe the probability density for a quark of flavor q to fragment into a hadron of type i.)

 \rightarrow Extraction is not straight forward. Convolution of F.F. with P.D.F.

Number of hadrons per DIS event: multiplicity \rightarrow In LO the observed multiplicity is related in the following way with the parton distribution function q(x), and fragmentation functions

$$\frac{dM^{i}(x,Q^{2},z)}{d(x,Q^{2},z)} = \frac{\sum_{q} e_{q}^{2}q(x,Q^{2})D_{q}^{i}(z,Q^{2})}{\sum_{q} e_{q}^{2}q(x,Q^{2})}$$

Simply, identification of at least one hadron in coincidence with the scattered muon is mandatory in SIDIS. In order to tag the struck quark of the nucleon via virtual gamma interaction.

Physics Letters B 764 (2017) 1–10 Negative pion multiplicities versus z for x bins and y bins. The bands correspond to the total systematic uncertainties for the range 0.30 < y < 0.50. The curves correspond to the COMPASS LO fit

Corrections for Raw multiplicities:

spectrometer acceptance, **the RICH efficiency and particle misidentification probability**, the contribution from decay products of

diffractive mesons, radiative corrections.

Efficient performance of a RICH is crucial.

PID performance of RICH-1

Efficient performance of RICH includes → understanding of RICH-1 Geometry, Radiator gas, reconstruction algorithm, RICH data analysis... But, most important the photon detection techniques, Physics Letters B 764 (2017) 1–10

Probabilities of RICH identification of π +, K+ and p as a π + versus momentum for the smaller θ bin 10mrad < θ < 40mrad. Statistical uncertainties are lower than the size of the symbols.

I am currently working to improve the performance of RICH-1

RICH-1 upgrade

After 2016

MWPCs + CsI: successful but with important performance limitations, in particular in the case of the 4 central chambers.

Decreased number of photons. Aging due to ion-back flow. Long recovery time after discharge.

Before 2016

COMPASS has pioneered GEMS, MicroMegas and THGEM-Micromegas based hybrids for detecting single photons in real experiment!!

I did the characterization of the newly installed hybrids with Yuxiang Zhao.

Outline

- □ Introduction to COMPASS
- □ Fundamental physics COMPASS addresses
- □ SIDIS and Particle Identification
- Analysis
 - Performance of RICH-1: refractive index issues.
 - Understanding physics background refractive index of the radiator gas.
 - Requirements to characterize new photon detectors.
 - > Characterization outcome.
- **Requirement of an EIC.**
- **R**&D for EIC.
- □ Participation in hardware activity of COMPASS and ongoing work .
- Given Future Plans.

Estimation of n-1

- \Box For each detected photon the polar and azimuthal angle θ and ϕ can be geometrically reconstructed.
- This photon theta can be used along with particle momentum to monitor the refractive index of the radiator gas. Using Cherenkov formula.
 - Tracking \rightarrow Particle momentum and direction.
 - Mirror centre of curvature \rightarrow Reflected track: Centre of our ring.

Distance between Centre of the ring and detected photon hits → Estimation of Single photon Cherenkov theta. Independent of radiator refractive index!

Precise knowledge of n, Cherenkov angle and momentum \rightarrow mass of the particle.

Performance of RICH-1: refractive index issues

 \Box For each detected photon the polar and azimuthal angle θ and ϕ can be geometrically reconstructed.

This photon theta can be used along with particle momentum to monitor the refractive index of the radiator gas. Using Cherenkov formula.

$$\cos\theta = \frac{1}{n\beta}; \beta = \frac{P}{E} \qquad E = \sqrt{m^2 + P^2}$$
$$n_{\pi-hypo} = \frac{\sqrt{m_{\pi}^2 + P^2}}{\cos\theta \cdot P}$$

The n-1 histograms showed incompatibility to old data.

The problem

Suspected candidates are: Wrongly computed Cherenkov angle!! \rightarrow Detector Position Wrongly computed Momentum!! \rightarrow Tracking After 2010 \rightarrow unmount the MWPC detector frames containing the MAPMTs to replace MWPCs with the new Hybrid detectors (Major Change). Several campaign of surveys \rightarrow check detector positions on the RICH

9

Analysis of RICH-1 survey : analysis and outcome

Center of the detector frame and the relative positions of the cathode w.r.t the frame center : inputs in the geometry file \rightarrow reconstruction software.

174 data points measured all over the RICH (Front and rear sides)

Cross-checking nominal values from survey data and compared to the nominal values of the CAD drawings! Compatibility with survey precision

Arrows show the difference wrt 2015 MWPC+MAPMT. 4.3 mm is toward beam axis, 2.6 mm is upstream outside vessel.

New detector table has been made and geometry file was updated.

Estimation of n-1 from physics data

The problem

Current situations: We can reproduce n-1 histograms similar to 2010 . Possible further improvements: Detail study of the code ongoing. MAPMT and mirror geometry under investigation.

Situation now

0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022 0.0002 0.0004 0.0008 0.0006

Subtraction of the background:

What gives rise this long tail in the unphysical n-1 in the higher range?

0.0012 0.0014

0.0016

0.0018

Physics data

9/1/2021

0.0004

0.0006

0.0008

0.001

0.0002

0.002

0.0022

Detailed study of the structure of the "refractive index maps".

Negative tracks

10

Background Map for RICH

The extended likelihood for each mass hypothesis M is written as following:

$$L_M = exp[-(S_M + B)] \prod_{j=1}^N f_M(\theta_j, \phi_j)$$
(1)

where f_M takes into account that each photon belongs to either signal or background. Therefore, $f_M(\theta, \phi) = s_M(\theta, \phi) + b$. To compute background, the assumption is $s_M(\theta_j, \phi_j)$ is zero

□ Hit probability/Square area/Event

Background:

- Detector noise
- Cherenkov photons from the other particles in the event
- Clusters from out-of-time hits.
- In 2016 detector thresholds were tuned

many time: optimize stability.

I am generating background maps for every period for the production of runs.

Outline

- □ Introduction to COMPASS
- Fundamental physics COMPASS addresses
- The physics motivation
 - Analysis
 - Performance of MAPMTs : observation and understanding
 - Analysis of RICH-1 survey : analysis and outcome
 - Post survey modification and outcome
 - Understanding physics background refractive index of the radiator gas
 - Data-taking to characterize new photon detectors.
 - > Characterization results.
- **Requirement of an EIC.**
- **R&D** for EIC.
- Participation in hardware activity of COMPASS and ongoing work .
- Fullens.

Data-taking to characterize new photon detectors.

For Characterization we needed special beam and dedicated trigger. As, 2016-

Pion Data taken in Sep.2017

Same number of events processed in reconstruction software.

50 times more statistics in hybrid

- **dedicated trigger** was set up for large angle coverage in RICH detector
- Negative Pion beam energy = 160 GeV
- Collaboration allowed 2 days of dedicated data taking for this characterization.

Characterization results.

15000 r

14800

Cathode 2

Photon angle reconstruction

Hybrids combined

MWPC combined

PMT combined

Number of photons

Results have been presented in RICH2018 conference, I have presented them in COMPASS Analysis and Collaboration meeting

Extrapolate to pion saturation angle \rightarrow 55.2 mrad, no of detected photo electrons = 12.9. First part of the function = 10.3 +/- 0.4; second part of the function= 2.6 +/- 0.3

Outline

- □ Introduction to COMPASS
- Fundamental physics COMPASS addresses
- **The physics motivation**
 - Analysis
 - Performance of MAPMTs : observation and understanding
 - Analysis of RICH-1 survey : analysis and outcome
 - Post survey modification and outcome
 - Understanding physics background refractive index of the radiator gas.
 - Requirement to characterize new photon detectors.
 - Characterization outcome.
- **Requirement of an EIC.**
- **R&D** for EIC.
- Participation in hardware activity of COMPASS and ongoing work .

RICH in future Electron Ion Collider(EIC)

Future EIC detectors need hadron PID in wide momentum range. Too challenging for present technology!

- Number of produced photons per unit length is limited for reduced density of gas.
- Increasing the radiator length recovers number of photons. This approach is prohibitive in a collider set up.
- Alternative approach: Detect photons in low wavelength (~ 120 nm)→ Quest for an alternative photocathode
- ✤ Windowless RICH is an option.
- ✤ To achieve better space resolution small pad size readout is needed. → October test beam.

Parton four momentum fraction x vs four momentum transferred by the electron to the proton Q^2 . Current data and the future coverage of an EIC.

Minipad with Micromegas

R&D for diamond photocathodes

CSI is a very well know photo-cathde for VUV photon detection

Caveat \rightarrow Hygroscopic. Air contamination deteriorates quantum efficiency.

Diamonds can be an alternative for the following properties (For Comparison Csl properties in Red):

- 1. Band Gap of 5.5 eV (6.2 eV)
- 2. Low Electron Affinity 0.35-0.5 eV (0.1 eV)
- 3. Chemical inertness. (Hygroscopic)
- 4. Radiation hardness.(Degradation under intense photon and ions flux)
- 5. Good Thermal conductivity.
- Recently Novel Photocathode
 Production technique (international patent: Patent n. WO 2017/051318 A9 - INFN-CNR) developed in Bari, Italy.
- Deposition : layers of hydrogenated nano-diamond powder.
- Powder filtering (grain size selection)
- Plasma Treatment (Hydrogenation)
- Water emulsion.
- Sprayed at T~120^oC (instead of 800^oC in standard technique).

R&D activity ongoing for the future EIC RICH foresees to use a less critical photocathode to work in the very far UV domain.

Mounting Csl coated detector is non trivial

THGEMs of active area 30X30 mm²

Fe⁵⁵ Source Ar/CO₂ 70/30 Before Coating

THGEMs of different types have been characterized before and after:

1) 0 µm rim ID1	H-ND	1/2 coating
2) 0 µm rim ID2	ND	1/2 coating
3) 10µm rim ID1	H-ND	full coating
4) 10µm rim ID2	Csl	full coating
5) 20µm rim ID1	ND	1/2 coating

R&D for Future EIC RICH

Hydrogenated Nano Diamond

Fully coated with hydrogenated Nano diamond After coating did not stand voltage (sparks).

The Surprise !!

Post coating characterization \rightarrow Voltage

Same setup \rightarrow One to One comparison.

I reported these results in the RICH2018 conference

Second year-end presentation

Promising technology!!

A lot or R&D required to understand the open questions.

Conclusions

- I took active part in the analysis of RICH performance with physics data and in R&D lab activities:
- The n-1 issue of 2016 has been identified and fixed.
- □ A better procedure to estimate the n-1 is under investigation.
- The new hybrid photon detectors have been characterized.
- □An R&D on diamond nano-grain photocathode is ongoing in the lab.

Future Plans:

- 1. Study the performance of RICH (tuning likelihood values: already started, very very preliminary) in different periods of data taking.
- 2. Construct an algorithm for extraction of n-1 from physics data, which is more precise.
- 3. To study the systematics of the hybrid detectors in detailed fashion.
- 4. To take part in the novel techniques of photon detection by converging the parallel R&D activities. Thanks for your attention

Photons

- □ For each valid track, selected hits in the photon detector are associated as Cherenkov photons.
- The photon impact position is called cluster. If the photon signal is shared between adjacent pixels, a weighted average determines the hit position. For the MAPMTs, cluster size is 1. Probability of adjacent sharing is negligibly small.
- The trajectory of a photon candidate is reconstructed from the position of its cluster, measured on the photon detector plane, and from its emission point. For each photon the polar and azimuthal angle θ and φ can be geometrically reconstructed.
- This photon theta can be used along with particle momentum to monitor the refractive index of the radiator gas.
 Using Cherenkov formula.
 1

$$cos\theta = \frac{1}{n\beta}; \beta = \frac{P}{E}$$

Gain Stability

The observed gain during this period is around 14K. The fluctuation is less than 5%.

The detectors have good stability and uniformity.

Gain Uniformity

Sector by Sector

Comparison of mechanical drawings before and after 2016upgrade

Section of 2016 hybrid+MAPMT Chamber.

Arrows show the difference wrt 2015 MWPC+MAPMT.

4.3 mm is toward beam axis, 2.6 mm is upstream outside vessel.

New detector table has been made and geometry file was updated.

Number of photons

Extrapolate to pion saturation angle \rightarrow 55.2 mrad, no of detected photo electrons = 12.9. First part of the function = 10.3 +/- 0.4; second part of the function= 2.6 +/- 0.3

- Algorithm selects rings in the hybrid which contain 95% of arc length of a half ring within the active are.
- For the hybrids the standard Poisson correction has been modified to Poisson + Binomial.
- pion likelihood > 1.2 *

$$\int dy \left[G_D(x,y) + \widetilde{G}_D(x,y) \right] = x g_T(x) - \frac{m_q}{M} \Delta_T f(x) .$$
(3.5.7)

By virtue of this constraint, the transverse polarisation distributions of quarks, that one could naïvely expect to be probed by DIS at a subleading level, turn out to be completely absent from this process.

Number of photons : other cathodes

Extrapolate to 55.2 mrad, n. of det. ph.e.= 9.83. First part of the function = 9.74 +/-0.4; second part of the function= 0.08 +/- 0.3

9/6/2018

9/1/2021