

Outline

- Basics
- Why this upgrade and how
- R&D and Detector commissioning
- Results
- Conclusions

Shuddha Shankar Dasgupta

INFN Sezzione di Trieste

On behalf of

COMPASS THGEM Group

Alessandria, Aveiro, Freiburg, Kolkata, Liberec, Prague, Torino

NDIP2017

Novel MPGD based Detectors of Single Photons for COMPASS RICH-1 Upgrade

COMPASS Experiment @ CERN

2

COMPASS Experiment @ CERN

For MWPCs limitations are

- Low gain, long recovery time after a discharge...
- Slow time response.
- Photon and ion feed back to the photocathode -> Open geometry

- In order to cope with the challenging requests posed by the future physics program of COMPASS a set of new generation, high performing photon detectors with an active area of 576X576 mm² will be installed. The characteristics of the new detectors are:
 - 1. A small time resolution $\leq 10 \ ns$.
 - 2. A closed geometry to avoid photon feedback.
 - 3. A large gain ($\geq 10^5$).
 - 4. A reduced Ion Back Flow (IBF) to the CsI photocathode ($\leq few$ %).

The final photon detectors

The hybrid detector concept, a change in technology the proof of the choice

Pre production quality control

THGEM post production treatment

THGEM post production treatment

- <u>Polishina</u> (Hinrichs Pumice Powder)
- Cleaning with high pressure water to remove all pumice residuals
- Ultrasonic bath (~1 h) @ 50-60 °C in Sonica PCB solution (pH11)
- Washing with demineralized water + oven at 180 °C for 24 h

Shuddha Shankar Dasgupta, University and INFN Trieste

Micromegas

Assembling new PDs

Complexity of the upgrade

Installation of the new PDs

Csl Photo-cathode preparation

HV control system with p, T correction

A dedicated HV control system has been designed programmed and tested to control and monitor new Hybrid Detectors: 104 HV channels in 9 different electrode types with diversified function in 16 sectors

P, T sensors inserted in the gas lines at gas in/out 06-07-2017 Shuddha Shankar Dasgupta, University and INFN Trieste

Commissioning •Operated and commissioned during the entire

Detectors successfully installed in April 2016 2016 COMPASS run

Timing

Photon Signal

Charged Particle Signal Suppression

The results of drift field scans confirm a good suppression of signals from charged particles in the nominal voltage configuration

21

Shuddha Shankar Dasgupta, University and INFN Trieste

Conclusion

- Four PDs covering 1.4 m² were built, tested and mounted on COMPASS RICH and successfully operated during 2016 run for the first time in the world!
- Preliminary results are very promising, Detailed analysis is going on ...
- Cerenkov rings have been observed ...
- Large area MPGD based single photon detectors are not dream but reality.

THANK YOU

Questions?

Backup: Gain Sharing

Shuddha Shankar Dasgupta, University and INFN Trieste

24

INFN

Istituto Nazionale di Fisica Nucleare Sezione di Trieste

BACKUP: IBF

The result of the direct measurement: 3% nicely matches the expectation

Correction of Voltage f(P,T) LabVIEW based system fully automated + logging

Final co relation coefficient achieved

tituto Nazionale

Fisica Nucleare

ione di Trieste

6:00:00 PM

Time[HH:MM:SS]

Backup: Csl coating of THGEMs

Backup: CsI QE measurement

19 Csl evaporations performed in 2015 - 2016 on 15 pieces: 13 THGEMs, 1 dummy THGEM, and 1 reference piece (best from previous coatings)

2

11 coated THGEMs avai	lable, 8 used + 3 sp	oares 🗸	
THGEM number	evaporation date	at 60 degrees	at 25 degrees
Thick GEM 319	1/18/2016	2.36	2.44
Thick GEM 307	1/25/2016	2.65	2.47
Thick GEM 407	2/2/2016	2.14	2.47
Thick GEM 418	2/8/2016	2.79	2.98
Thick GEM 410	2/15/2016	2.86	3.14
Thick GEM 429	2/22/2016	2.75	2.74
Thick GEM 334	2/29/2016	2.77	3.00
Thick GEM 421 re-coating	3/10/2016	2.61	2.83
Reference niece	7/4/2016	3 98	3 76

QE measurements indicate an average THGEM QE = $0.73 \times \text{Ref.}$ piece QE, in agreement with expectations (THGEM optical transparency = 0.76)

Thanks to Thomas Schnider and Miranda Van Stenis

Backup: The COMPASS THGEM design

Backup: mechanical frames and wires

drift and field wires: Cu-Be, Au coated 4 mm pitch, 100 µm diam.

INFN

i Fisica Nucleare

tension meter

Backup: field shaping electrodes

large field values at the chamber edges and on the guard wires

Field shaping electrodes in the isolating material protections of the chamber frames

INFN

Istituto Nazionale

di Fisica Nucleare