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Introduction: COMPASS RICH-1 @ CERN

3

Central Cathodes n of ph. @ β=1

COMPASS Spectrometer dedicated to h physics

COMPASS RICH-1 upgraded in 2006
with MAPMT in the most inner central
region MAPMTs coupled to lens
telescopes 1.4 m2

MWPCs+CsI (from RD26):  successful but 
performance  limitations, in particular for  
the 4 central chambers

COmmon Muon Proton Apparatus Structure Spectroscopy Fixed target experiment at CERN, SPS
50 mt. long spectrometer

The photo detector system of compass RICH-1 (upper part)

Number of photons for the very 
top and very bottom 60x60 cm2 

MWPC:
• On average lower than 

the other PC 𝑵𝑵𝒑𝒑𝒑𝒑 =
𝟏𝟏𝟏𝟏

• Slow decreasing trend 
𝑵𝑵𝒑𝒑𝒑𝒑 vs year 
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Cherenkov light detection, MWPC with CsI photocathode: the nearly worldwide  used architecture and its limitation  

CsI coating

MWPCs + CsI
MWPCs with CsI photocathode, the limitations

Severe recovery time (~ 1 d) after a
detector discharge
 Ion accumulation at the photocathode

Feedback pulses

 Ion and photons feedback from the
multiplication process

Ageing (QE reduction) after integrating a
few mC / cm2

 Ion bombardment of the
photocathode

Low gain: a few times 104(effective
gain: <1/2)  “slow”
detector

To overcome the limitations:

Less critical architecture
suppress the PHOTON & ION  feedback
use intrinsically faster detectors

MPGDs

RD26
development

Reduced wire-cathode gap because of :

Fast RICH (fast ion collection)  
Reduced MIP signal
Reduced cluster size
Control photon feedback spread
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The MPGD hybrid approach: THGEMs and MicroMegas

• One 300 mm x 600 mm Bulk Micromegas detector
• Two layers of THGEMs (300 mm x 600 mm) in

staggered configuration

Signal read  out via capacitive coupling pad readout 
and  APV25 F/E boards

Two modules are put side by side to build a 600 mm x 600 mm detector

To simplify the construction requirements a
modular architecture has been adopted
where one “module” consists of:

THGEM 1

THGEM 2

Hybrid detector concept 

IBF reduction:  approx. 3%
Charge splitting processesLarger Gas Gain

8mmx8mm pad size
0.5 mm pad spacing
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THGEM characterization and studies, IBF reduction with MicroMegas

THGEM characterization

Photoelectron extraction

IBF (Ion Back Flow) suppression
Cherenkov light detection in TB

100 μm rim

no rim

Time resultion
~7 ns

UV light  
scan
vs E_driftPhoton yield (blue)

& Charged Particles (red)  
vs Drift Field

IBF suppression (<3%)
introducing a MM stage

Hybrid architecture
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THGEM: quality assessment

Measurement of the raw material  
thickness before the THGEM  
production, accepted:
± 15 µm ↔ gain uniformity σ < 7%
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THGEM: quality assessment

Measurement of the raw material  
thickness before the THGEM  
production, accepted:
± 15 µm ↔ gain uniformity σ < 7%

THGEM polishing with an “ad hoc” protocol setup by us
including backing:
>90% break-down limit obtained
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THGEM and Micromegas: quality assessment 

Measurement of the raw material  
thickness before the THGEM  
production, accepted:
± 15 µm ↔ gain uniformity σ < 7%

THGEM polishing with an “ad hoc” protocol setup by us
including backing:
>90% break-down limit obtained

X-ray THGEM test  to access
gain uniformity (<7%) and spark behaviour

55Fe source spectra

X-ray MM test  to access 
integrity and  gain 
uniformity  (<5%)

MICROMEGAS
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Micromegas: characterization and studies, the discrete element approach

1 Single pad scheme: 

Blue pad at HV via individual 
pad resistor at the PCB rear 
surface

Red pad: signal induced by RC 
coupling

Resistor arrays
Connector 8+1 pin

Test of the (4 x 2)  30 x 60 cm2 MMs
[in total: 1.4 m2, 19040 pads]:

-2 pads with shorts
-1 pad: no read-out connection

 3 bad pads out of 19040 before installation

“buried pad” 

“surface anode” pad

“Z drilling controlled 
via”  planarity issue

“Via closure”  leakage issue

The COMPASS RICH-1 approach

Mesh at Ground
Pads HV segmentation
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Finale detector: the mounting phase

mechanics

Wire planes

THGEM staggering

detector layers

Glueing the support pillars

Automatized glueing
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THGEM: CsI coating at CERN 

Turbopump

THGEM

THGEM box

4 evaporators

piston

evaporators

QE measurement
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THGEM: CsI coating at CERN, QE measurements 

19 CsI evaporations performed in 2015 – 2016 on 15 pieces:  13 THGEMs, 1 dummy THGEM,
and 1 reference piece (best from previous coatings) on gold coated substrate

11 coated THGEMs available, 8 used + 3 spares

THGEM number evaporation date at 60 degrees at 25 degrees
Thick GEM 319 1/18/2016 2.36 2.44
Thick GEM 307 1/25/2016 2.65 2.47
Thick GEM 407 2/2/2016 2.14 2.47
Thick GEM 418 2/8/2016 2.79 2.98
Thick GEM 410 2/15/2016 2.86 3.14
Thick GEM 429 2/22/2016 2.75 2.74
Thick GEM 334 2/29/2016 2.77 3.00
Thick GEM 421 re-coating 3/10/2016 2.61 2.83

Reference piece 7/4/2016 3.98 3.76

QE is the result of a surface scan
(12 x 9 grid, 108 measurements)

Good uniformity, in the example
σQE / <QE> = 3%

QE measurements  indicate

<THGEM QE> =0.73 x Ref. pieceQE

in agreement with expectations

THGEM optical  opacity = 0.77
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Final mounting on the RICH-1 detector
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The High Voltage Control System

In total 136 HV channels 

with correlated values

Hardware, commercial by CAEN
Custom HV control system

 Custom-made (C++, wxWidgets)
 Compliant with COMPASS DCS (slow control)
 “OwnScale” to fine-tune for gain uniformity
 V, I measured and logged at 1 Hz
 Autodecrease HV if needed (too high spark-rate)
 User interaction via GUI
 Correction wrt P/T to preserve gain stability 

 Gain stability vs P, T:
 G = G(V, T/P)
 Enhanced in a multistagedetector
 ∆T = 1oC ∆G ≈ 12%
 ∆P = 5 mbar  ∆G ≈ 18 %

 THE WAY OUT:
 Compensate T/P variations by V

Gain stability better than 10%
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THGEM and MICROMEGAS what have we learned so far:
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The final detector: noise figure  

MWPCs (0.2 pF): <σ> ~ 700 e-

Hybrids (4 pF): <σ> ~ 900 e-

APV 25 FE chip
Approximately 70 kch.
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The Cherenkov photon signal detection

(A0<5 ADC units, 0.2<A1/A2<0.8)

All sectors provide the  same 
time response

1 µs

Selecting good hit candidates Clusterization to separate charged particle tracks

MWPC (old detector)

APV saturation
photons

Charged 
Tracks

Noise

Charged particle ionization suppression by strong 
reversed bias

Hybrid MPGD (novel detector)
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Preliminary results of the new detectors

Correlation between photons and trajectories

For reference:

θ (β = 1) = 52.5 mrad

Ring centre (calc.)

p = 3.8 GeV/c
θ = 38 mrad p = 3.5 GeV/c

θ = 34 mrad
p = 7.8 GeV/c
θ = 49 mrad

p = 8.4 GeV/c
θ = 49.5 mrad

p = 4.8 GeV/c
θ = 43.5 mrad

σ =  1.9 mrad

Residual distribution for individual photons (preliminary π-sample):

θ calculated−θ photon
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Conclusion, remarks

Four hybrid PDs covering 1.4 m2 were built, tested and mounted on COMPASS RICH and successfully
operated during 2016 and 2017 run.

COMPASS RICH-1 is the first RICH where single photon detection is accomplished by MPGDs

Characterization is ongoing!

QUESTIONS ?

Thanks for your attention!
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Conclusion, remarks

SPARES
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Hybrids and MWPC
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Photon signal
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Field shaping near the detector borders

large field values at the chamber edges and on the guard wires

Field shaping 
electrodes in the 
isolating material 
protections of the 
chamber frames

isolating material 
(Tufnol 6F/45) 
protection
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P/T correction, the method 
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Correction of Voltage 𝑓𝑓 𝑃𝑃,𝑇𝑇 LabVIEW 
based  system fully automated + 
logging 

p, T sensor  at gas input and output
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IBF measurements

Trieste home-built picoammeters

The result of  the direct 
measurement: 3% nicely 
matches the expectation
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CsI as photon detector, handling the VUV domain

COMPASS RICH-1, gas transparency
-gas cleaning by on-line filters,
-separate functions:

-Cu catalyst, ~ 400C for O2
-5A molecular sieve, ~ 100C for H2O

transmission  
through 1,87 m,  
corresponding to:

H2O: ~1 ppm,  

O2: ~3 ppm

typical
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