

The MPGD-based photon detectors for the COMPASS RICH-1 upgrade

Stefano Levorato – INFN TRIESTE

on behalf of COMPASS THGEM group:

Alessandria, Aveiro, Budapest, Freiburg, Kolkata, Liberec, Prague, Torino, Trieste.

Outline

- Introduction: COMPASS RICH-1 @ CERN
- Why MPGD-based photon detectors and a *change* in the Cherenkov *photo detection technology*
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints

Introduction: COMPASS RICH-1 @ CERN

COmmon Muon Proton Apparatus Structure Spectroscopy Fixed target experiment at CERN, SPS 50 mt. long spectrometer

COMPASS Spectrometer dedicated to h physics

The photo detector system of compass RICH-1 (upper part)

COMPASS RICH-1 upgraded in 2006 with MAPMT in the most inner central region MAPMTs coupled to lens telescopes 1.4 m²

the 4 central chambers

MWPCs+Csl (from RD26): successful but performance limitations, in particular for

- On average lower than the other PC $\langle N_{ph} \rangle =$ 13
- Slow decreasing trend $\langle N_{ph} \rangle$ vs year

2006 2007 2008 2009 2010 201

10

50 6 p (GeV/c)

40

 $N_{\rm s} \frac{15.5 \pm 0.2}{1.3 \pm 0.1}$

 γ^2 /NDF 1.0 (0.497)

Outline

- Introduction: COMPASS RICH-1 @ CERN
- Why MPGD-based photon detectors and a *change* in the Cherenkov *photo detection technology*
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints

Reduced wire-cathode gap because of :

de al an all

Fast RICH (fast ion collection) Reduced MIP signal Reduced cluster size Control photon feedback spread

MWPCs with CsI photocathode, the limitations

Severe recovery time (~ 1 d) after a detector discharge

Ion accumulation at the photocathode

Feedback pulses

- <u>Ion and photons feedback</u> from the multiplication process
 Ageing (QE reduction) after integrating a few mC / cm²
 - <u>Ion bombardment</u> of the photocathode

Low gain: a few times 10⁴ (effective gain: <1/2) "slow" detector

To overcome the limitations:

Less critical architecture suppress the PHOTON & ION feedback use intrinsically faster detectors

Outline

- Introduction: COMPASS RICH-1 @ CERN
- Why MPGD-based photon detectors and a *change* in the Cherenkov *photo detection technology*
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints

The MPGD hybrid approach: THGEMs and MicroMegas

.

4.5mm

38.5mr

5 mm

Charge splitting processes →Larger Gas Gain

To simplify the construction requirements a modular architecture has been adopted where one "module" consists of:

One 300 mm x 600 mm Bulk Micromegas detector

Two layers of THGEMs (300 mm x 600 mm) in **a** staggered configuration

Two modules are put side by side to build a 600 mm x 600 mm detector

Signal read out via capacitive coupling pad readout and APV25 F/E boards

8mmx8mm pad size 0.5 mm pad spacing

FUSED SILICA WINDOW

PROTECTION WIRES

DRIE WIRES

THGEM 2

ANODE WITH PAD

IBF reduction: approx. 3%

MESH

Outline

- Introduction: COMPASS RICH-1 @ CERN
- Why MPGD-based photon detectors and a *change* in the Cherenkov *photo detection technology*
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints

THGEM characterization

IBF (Ion Back Flow) suppression

Cherenkov light detection in TB-

Measurement of the raw material thickness before the THGEM production, accepted: \pm 15 µm \leftrightarrow gain uniformity σ < 7%

shilles and

Measurement of the raw material thickness before the THGEM production, accepted: \pm 15 µm \leftrightarrow gain uniformity σ < 7%

 THGEM polishing with an "ad hoc" protocol setup by us *including backing*: >90% break-down limit obtained

Measurement of the raw material thickness before the THGEM production, accepted: \pm 15 µm \leftrightarrow gain uniformity σ < 7%

X-ray THGEM test to access gain uniformity (<7%) and spark behaviour

220	207	206	198	185	202	188
230	207	199	198	196	207	196
220	204	204	198	193		192
220	205	202	199	188		192
210		195	195	191	199	199
210	199	195	205	199	196	199
200	194	195	197	194	190	192
200	199	195	209	195	190	198
100	201	197	208	195	199	198
130	199	200	199	195	199	198
	199	190	199	185	186	190

THGEM polishing with an "ad hoc" protocol setup by us *including backing*: >90% break-down limit obtained

MICROMEGAS

X-ray MM test to access integrity and gain uniformity (<5%)

Istituto Nazionale di Fisica Nuclear

Micromegas: characterization and studies, the discrete element approach

Finale detector: the mounting phase

Glueing the support pillars

Automatized glueing

Stefano Levorato – INFN Trieste – 2017 Nuclear Science Symposium – Atlanta, Georgia -USA

detector layers

THGEM: CsI coating at CERN

THGEM: CsI coating at CERN, QE measurements

19 Csl evaporations performed in 2015 – 2016 on 15 pieces: 13 THGEMs, 1 dummy THGEM, and 1 reference piece (best from previous coatings) on gold coated substrate

11 coated THGEMs available, 8 used + 3 spares

THGEM number	evaporation date	at 60 degrees	at 25 degrees
Thick GEM 319	1/18/2016	2.36	2.44
Thick GEM 307	1/25/2016	2.65	2.47
Thick GEM 407	2/2/2016	2.14	2.47
Thick GEM 418	2/8/2016	2.79	2.98
Thick GEM 410	2/15/2016	2.86	3.14
Thick GEM 429	2/22/2016	2.75	2.74
Thick GEM 334	2/29/2016	2.77	3.00
Thick GEM 421 re-coating	3/10/2016	2.61	2.83
Reference piece	7/4/2016	3.98	3.76

QE measurements indicate

 $I_{Normalized} = \frac{I_{CsI} - I_{CsI_{Noise}}}{I_{Ref} - I_{Ref_{Noise}}}$

<THGEM QE> =0.73 x Ref. pieceQE

in agreement with expectations

THGEM optical opacity = 0.77

Bardy allow all

QE is the result of a surface scan (12 x 9 grid, 108 measurements)

Good uniformity, in the example

 σ_{OE} / <QE> = 3%

Outline

- Introduction: COMPASS RICH-1 @ CERN
- Why MPGD-based photon detectors and a *change* in the Cherenkov *photo detection technology*
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints

Final mounting on the RICH-1 detector

The High Voltage Control System

HV segmentation Undetector Undetector</

In total 136 HV channels with correlated values

Hardware, commercial by CAEN Custom HV control system

Gain stability vs P, T:

G = G(V, T/P)

- Enhanced in a multistage detector
- $\Delta T = 1 \circ C \rightarrow \Delta G \approx 12\%$
- $\Delta P = 5 \text{ mbar} \rightarrow \Delta G \approx 18\%$

THE WAY OUT:

 Compensate T/P variations by V Gain stability better than 10%

- <u>Custom-made</u> (C++, wxWidgets)
- Compliant with COMPASS DCS (slow control)
- "OwnScale" to fine-tune for gain uniformity
- V, I measured and logged at 1 Hz
- Autodecrease HV if needed (too high spark-rate)
- User interaction via GUI
- Correction wrt P/T to preserve gain stability

THGEMs, lessons

- <u>Full</u> vertical <u>correlation</u> of current sparks THGEM1 & THGEM2
- Recovery time <10 s (our HV arrangement)
- Sparke rates: ~ no dependence on beam intensity and even beam on-off
- <u>Discharge correlation</u> within a THGEM (also non adjacent segments) and among different THGEMs (cosmics ?)
- → Total spark rates (4 detectors): ~10/h

MICROMEGAS, lessons

- MM sparks only when a THGEM spark is observed (not vice versa)
- Recovery time ~1s (our HV arrangement)
- The only real issue: dying channels (pads)

Local shorts, larger current, no noise issue 2.5 ‰ developed in 12 months Dirty gas / dust from molecular sieves & catalyst? Finer mechanical filters added: 7 μm pore

ıle di Fisica Nucleare

The final detector: noise figure

Outline

- Introduction: COMPASS RICH-1 @ CERN
- Why MPGD-based photon detectors and a *change* in the Cherenkov *photo detection technology*
- The architecture of the MPGD-based detector
- Construction, quality control and assembly
- Detector commissioning
- Performance hints

The Cherenkov photon signal detection

Clusterization to separate charged particle tracks

Selecting good hit candidates (A0<5 ADC units, 0.2<A1/A2<0.8)

Hybrid MPGD (novel detector)

reversed bias

MWPC (old detector)

The Cherenkov photon signal detection

Clusterization to separate charged particle tracks

Selecting good hit candidates (A0<5 ADC units, 0.2<A1/A2<0.8)

Hybrid MPGD (novel detector)

reversed bias

MWPC (old detector)

Preliminary results of the new detectors

Four hybrid PDs covering 1.4 m² were built, tested and mounted on COMPASS RICH and successfully operated during 2016 and 2017 run.

COMPASS RICH-1 is the first RICH where single photon detection is accomplished by MPGDs

Characterization is ongoing!

QUESTIONS?

Thanks for your attention!

SPARES

- de la sel

Stefano Levorato – INFN Trieste – 2017 Nuclear Science Symposium – Atlanta, Georgia -USA Stefano Levorato – INFN Trieste – 2017 Nuclear Science Symposium – Atlanta, Georgia -USA

P/T correction, the method

p, T sensor at gas input and output

Correction of Voltage f(P,T) LabVIEW based system fully automated + logging

$$V_{calc} = V_0 \left(1 + \alpha \frac{P - P_0}{P_0} - \beta \frac{T - T_0}{T_0} \right)$$

The result of the direct measurement: 3% nicely matches the expectation

- dulla abil

DANGER

DANGER

DANGER

