The MPGD-based photon detectors for the upgrade of COMPASS RICH-1

S. Levorato INFN Trieste,
on pehalf of COMPASS THGEM group:

Outline of the talk

1) The motivation of the upgrade
2) The single photon detector for the upgrade: a "MPGD choice" and its building blocks

THGEM
MicroMegas
3) Construction and installation
4) The detector preliminary performance

$$
\begin{aligned}
& \text { EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH } \\
& \qquad \begin{array}{l}
\text { CERN-SPSC-2010-014 } \\
\text { SRSC-P300 } \\
\text { May } 17,2010
\end{array}
\end{aligned}
$$

COMPASS RICH-1
Already upgraded in 2006 with MAPMT in the most inner central region

Number of photons for central $60 \times 60 \mathrm{~cm}^{2} \mathrm{MWPC}$ - On average lower than the other PC $\left\langle N_{p h}\right\rangle=13$

- Slow decreasing trend $\left\langle N_{p h}\right\rangle$ vs year

Central Cathodes

Improved / challenging performance for the COMPASS spectrometer detectors
\checkmark Flavour separation and fragmentation in SIDIS
\checkmark Transverse momentum dependent distributions (TMD)
\checkmark QCD at very low momentum transfers

- In our case a "improved PID performance"
- Faster and higher gain

Hybrid detector concept

To simplify the construction requirements a modular architecture has been adopted where one "module" consists of:

One 300 mm x 600 mm Bulk Micromegas detector Two layers of THGEMs ($300 \mathrm{~mm} \times 600 \mathrm{~mm}$) in staggered configuration

Multi-Pad Anode $8 m m \times 8 m$ pad size

The Hybrid detector concept a result of 8 years of intense R\&D activity: just a glimpse

\qquad

The hybrid first "ingredient" : the THGEM

The THGEMs design: specifics

THGEM pcb size $=620 \mathrm{~mm} \times 320 \mathrm{~mm}$, active area $=581 \mathrm{~mm} \times 287 \mathrm{~mm}$

THGEM quality assessment: material selection

Lead-free, Halogen-free Material

PRODUCT			EM 370-5		
Thickness			0.407 mm		
Copper			$35 \mu / 35 \mu$		
Sheet Size			$1245 \times 1092 \mathrm{~mm}$		
$\begin{aligned} & \text { Pemitituivy } \\ & \text { Re } \\ & \hline \text { 50\% } \end{aligned}$	1 MHz	2.55 .9	C-2423350	-	4.8
	1 GHz			-	4.3
Volume	stivity	2.5.17.1	C.96/35190	Ma.cm	$>10^{10}$

A uniform response of the detector requires stricter tolerances than those offered by producers

Tolerance inch (mm) inch (mm) 0.0030 " (0.076)

Mitutoyo EURO CA776 xyz measuring machine, clean room, thermalize environment

Selection campaign 50 foils of $1245 \mathrm{~mm} \times 1092 \mathrm{~mm}$ raw PCB resized into $800 \mathrm{~mm} \times 800 \mathrm{~mm}$ and their thickness measured

- The foil thickness is measured in a matrix of 36×36 points.
- Each point is sampled 3 times and the average is computed. (~5200 data entries for each foil).
- Measurements are performed on both sides of the foil for consistency checks.

THGEM performance QA in two consecutive steps:

1. Paschen test: discharge counting vs voltage in controlled atmosphere $\left(\mathrm{Ar} / \mathrm{CO}_{2} \mathrm{Y}\right.$ 70/30) w \& w/o irradiation

i.e. accepted piece \#307 $0.29 \mathrm{~d} / \mathrm{h} @ 1150 \Delta \mathrm{~V}$ for 14 h

 production

The hybrid second "ingredient" : the Bulk MicroMegas

Bulk Micromegas: production and performance assessment

Bulk Micromegas: production and performance assessment

Effective GAIN scan Ar:CH4 40:60

1 Single pad scheme:
Blue pad at HV via individual pad resistor at the PCB rear surface

Red pad: signal induced by RC coupling

APV25 electronic F/E board

In case of discharge of 1 pad only effect: 2 V drop $\rightarrow \sim 4 \%$ drop in gain for the surrounding pads, S. Dasgupta Poster for details

Assembly and installation in glimpse

Preliminary results! ...just one moment more

The Hybrid detector controls: the delicate issue of HV powering

A dedicated HV control system has been designed programmed and tested to control and monitor new Hybrid Detectors: 104 HV channels in 9 different electrode types with diversified function in 16 sectors

- HV and I is monitored at the nA level, non expected detector behaviour triggers HV reduction following dedicated set of rules (under study)
- Performs HV corrections due to temperature and pressure changes
- Communicates with the existing COMPASS DCS (too slow for our needs).

P, T sensors inserted in the gas lines at gas in/out

See Shuddha Dasgupta Poster

In multilayer structure a 1% of P / T variation corresponds to 40% total gain variation: THGEM 15\% (x 2) and MM 12\%
Need for P/T correction; residual variation ~10 \%

10 days

The detector commissioning is ongoing! Signal seen!

Data taken in the same conditions, w/o and w beam

The peak from the electronic noise is the same

Γ

The hybrid detector: the first results from systematic tests on the COMPASS experiment!

	ativepads \%	endses in adive pads	anose ine
172	7807	3.21	954
P04	71.93	314	942
11	\%99	251	34
193	95.57	307	92

Active surface of the detector (HV) 50\%
from the same data, the number of "signal hits" on Hybrids is similar or larger than on MWPCs

A total surface of $1.4 \mathrm{~m}^{2}$ has been successfully instrumented by large size ($60 \times 60 \mathrm{~cm}^{2}$) single photon detector based on MPGD in the COMPASS RICH-1 detector:

FIRST TIME OF MPGD PHOTON DETECTORS EQUIPPING A RICH IN A RUNNING EXPERIMENT!

These detectors have been installed during Spring 2016.
This technology is the result of several years of R\&D activity.

The running in phase and the commissioning of the single photon detector started since one month thanks to a large effort of the whole group

The characterisation of the detector is now ongoing, the preliminary results shown are very promising, and the detector ultimate performance will be explored in the next months

Thank you very much!

