# Developments in MPGD based photon detection for RICH application in view of the future EIC

Daniele D'Ago

University of Trieste and INFN Trieste On behalf of Trieste EIC group

### HADRON IDENTIFICATION AT EIC

Key requirement at EIC > efficient particle identification at high momentum

RICH technique in this environment is challenging:





Large gaseous RICH:

- > hadron PID from 3 to 60 GeV/c
- > acceptance: H: 500 mrad V: 400 mrad
- > trigger rates: up to  $\sim$ 50 kHz beam rates up to  $\sim$ 10<sup>8</sup> Hz
- > material in the beam region: 1.2% Xo material in the acceptance: 22% Xo

> detector designed in 1996, in operation since
2002 with MWPCs, upgraded in 2006 with
MAPMTs, in 2016 with THGEMs + Micromegas

# *STARTING POINT:* **COMPASS HYBRID MPGD BASED PD**s

2 layers of staggered THGEMs

- > Top of THGEM1 Csl coated
- > Pre-amplification
- > Tranversally enlarged avalanche
- $>400~\mu m$  thickness, 400  $\mu m$  hole diameter, 800  $\mu m$  pitch, no rim





#### Resistive Micromegas (bulk technology)

- > Trap ions
- > ~100 ns signal formation
- > woven stainless steel mesh,18  $\mu m$  wires, 63  $\mu m$  pitch
- > One pillar per pad, 500  $\mu m$  diameter.
- > Gap = 128  $\mu$ m.

Modular structure: all components and services within active area

Pad size (3x3 mm<sup>2</sup>)(0.5 mm inter-pad spacing)

```
10x10 cm<sup>2</sup> active area - 1024 pads.
```

Biasing

resistor







### **TEST BEAM - RINGS IN** $Ar: CH_4$ 50: 50 **AND PURE** $CH_4$



8

### HYDROGENATED NANODIAMOND

Gaseous Photon Detectors require a photocathode. Up to date, only Csl has been successfully used. BUT:

> hygroscopic - water vapours dissociate the molecule

> not robust to ion bombardment

Degradationof Quantumefficiency

#### EXTREMELY DELICATE HANDLING IS REQUIRED

Recently, HND proposed as valid alternative in UV domain

@  $\lambda$ =140 nm Q.E. is comparable with CsI HND is chemically inert and radiation hard



### HYDROGENATED NANODIAMOND

Gaseous Photon Detectors require a photocathode Up to date, only Csl has been successfully used

> hygroscopic - water vapours dissociate the molecule

> not robust to ion be

EXTREME

D



• HND [APL-108 (2016) 083503]

### **R&D MILESTONES AND STATUS**

> Hydrogenation of ND by plasma treatment (MWPHCVD) @ T > 800  $^{o}C$ 

- > Coating by pulsed spray technique
- On PCB > Q.E. measurement (vacuum, gas mixtures)
- On THGEM > gain and stability (gas mixture)

#### **REMARKABLE:**

Hydrogenating the powder before coating makes it compatible with gaseous detector components

#### PRELIMINARY Ageing due to ion bombardment NEVER MEASURED BEFORE **QUANTUM EFFICIENCY** 0 QE **Fresh Sample** Ж After 0.263 mC/cm<sup>2</sup> Charge Accumulation 0.08 After 2.895 mC/cm<sup>2</sup> Charge Accumulation vacuum After 5.527 mC/cm<sup>2</sup> Charge Accumulation . After 8.159 mC/cm<sup>2</sup> Charge Accumulation 0.06 . ..... CH . $CH_{a}:Ar =$ . 0.04 50:50 . 0.02 150 180 130 140 160 170 0.5 1.5 25 $\lambda$ (nm) Electric Field over PC [kV/cm]

Photocurrent at photocathode @  $\lambda$  = 162 nm. Normalized using a calibrated photodiode.

50

45

35

30

25

20

15

10

5

0

Photocurrent [pA]

QE as a function of  $\lambda$  for fresh and various charge accumulations due to ion bombardment on H-ND coated Au\_PCB substrate.

### **H-ND COATED THGEMS**



THGEM VIII - After coating and heat treatment (July 23, 2019)

Systematic characterization of H-ND coated and uncoated THGEMs is ongoing

#### H-ND Coated THGEMs do not sustain HV

Possible explanation > water trapped due to spraying procedure

Cure > heat treatment (T > 100  $^{o}C$ )

# After heat treatment THGEMs performance recovered

| substrate type | sample label | coating material | number of spray shots |
|----------------|--------------|------------------|-----------------------|
| THGEM          | TB IX        | ND               | 300                   |
| THGEM          | TB VIII      | HND              | 140                   |
| THGEM          | TB III       | HND              | 43                    |
| THGEM          | TB VII       | HND              | 55                    |
| THGEM          | TB XIX       | HND              | 59                    |
| THGEM          | TB XI        | HND              | 250                   |
| disc           | PBC1         | ND               | 100                   |
| disc           | PBC2         | ND               | 100                   |
| disc           | PBC3         | ND               | 200                   |
| disc           | PBC4         | ND               | 200                   |
| disc           | PBC5         | ND               | 50                    |
| disc           | PBC6         | HND              | 50                    |
| disc           | PBC9         | HND              | 25                    |
| disc           | PBC7         | HND              | 50                    |
| disc           | PBC10        | HND              | 100                   |
| disc           | PBC11        | HND              | 200                   |
| disc           | PBC8         | HND              | 400                   |

### **QUANTUM EFFICIENCY AND HEAT TREATMENT**



How does heat treatment affect quantum efficiency?

A little decrease in QE is observed (not dramatic though)

Possible explanation > THGEMs are treated in air, possible oxidation

### CONCLUSION

Intense R&D is ongoing

MiniPAD prototype has been successfully tested in a test beam. Further work is required

- optimizing the design
- Study of a suitable front end electronics (current is no longer produced)

H-ND coated THGEMs are giving promising results. Next steps

- Complete ongoing comparative study (H-ND coated VS uncoated)
- Prototype with additional MM stage for single photon detection

### BIBLIOGRAPHY

J. Agarwala, et al., The MPGD-based photon detectors for the upgrade of COMPASS RICH-1 and beyond, Nuclear Inst. and Methods in Physics Research, A (2018), <u>https://doi.org/10.1016/j.nima.2018.10.092</u>

J. Agarwala, et al., Optimized MPGD-based Photon Detectors for high momentum particle identification at the Electron-Ion Collider, Nuclear Inst. and Methods in Physics Research, A (2018), <u>https://doi.org/10.1016/j.nima.2018.10.185</u>

S. Levorato, Performance of the discrete element Bulk MicroMegas of the COMPASS RICH-1 and the R&D for the EIC project, EICUG2017

F. Tessarotto, Development of a modular mini-pad gaseous photon detector for RICH applications at the EIC, EICUG2019

F. M. Brunbauer, et el., Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC, (in press)