The novel photon detectors based on MPGD technologies for the upgrade of COMPASS RICH-1

Chandradoy Chatterjee

Università degli Studi di Trieste and INFN – Sezione di Trieste on behalf of Alessandria-Aveiro-Freiburg-Liberec-Calcutta-Prague-Torino-Trieste Collaboration Presented at: IFAE 2017, Trieste, Italy, 19-21 April 2017

COMPASS RICH-1

Common Muon and Proton Apparatus for Structure and Spectroscopy

THGEM for Upgrade

Thickness uniformity plays an essential role in defining the maximum achievable gain. Observed Thickness variation up to 50 µm for 400 µm thick PCBs. Maximum gain is limited by the thinner area. The raw PCB for THGEM production have been selected among those presenting thickness variation smaller than ±6µm

Elite Material Co	o., Ltd.	7	echnical Data	
Lead-free , H	alogen-free	Materia	al	
PRODUCT	EM 370-5			
Thickness 0.407 mm		mm		
Copper	35μ / 35μ 1 245 x 1 092 mm			
Sheet Size				
Permittivity 1 MHz	C 24/22/50	-	4.8	Positioning blocks
RC 50%) 1 GHz 2.5.5.9	0-24/23/30	-	4.3	
Volume resistivity 2.5.17.1	C-96/35/90	MΩ-cm	>1010	700 X 700 mm ²
Surface resistivity 2.5.17.1	C-96/35/90	MΩ	>10 ⁹	active area

Csl coating on the top of the THGEM is done at CERN measured QE as expected.

Csl Coating Procedure: Installation of substrate inside evaporation plant together with gas tight chamber Evacuation of evaporation plant for two

Spin Structure, Gluon Polarization	Pion Polarizability						
Flavor Decomposition	Diffractive and Central Production						
Transversity	Light Meson Spectroscopy						
Transverse Momentum Dependent PDFs	Baryon Spectroscopy						
COMPASS - II (2012 – 2018)							
DVCS and DVMP	Pion and Kaon Polarizabilities						
Unpolarized SIDIS and TMDs	Drell-Yan Studies						
Lol in preparation (2020)							

MWPCs with CsI Photocathodes

The new PDs have to be capable of : A small time resolution $\leq 10 ns$. A closed geometry to avoid photon feedback. A large gain ($\sim 10^5$). A reduced Ion Back – Flow (IBF) to the CsI photocathode (≤3 %). MPGD based PDs: Chosen -> HYBRID: THGEMs + MICROMEGAS

THGEM

THGEMs are Electron Multipliers derived from the GEMs concept with larger geometrical dimensions and produced by standard PCB drilling technology.

CB	technology, thus:	About PCB geometrical d	limensions:	1	1	Here
	robust	I fals discussions	0.2 1			
	mechanically self supporting	Pitch :	0.5 - 5 mm		in l	
	industrial production of large size	Thickness :	0.2 - 3 mm	CAR ONL		
	boards		() Palace		Mun This	-
	economic	$\mathcal{Y}_{\mathcal{Z}}(0)$				
			any		NO. MAR	17
om	paring to GEMs			Nº 1 Contraction		

Atm. pressure Gas flow mode

0.5

1.0

0.0

AMPTEK Mini-X Au used at 15

kV, 200µA + Cu foil provides 8 keV X-rays uniform illumination and a rate > 5 kHz cm⁻² (for 1 cm Ar/CO₂ 70/30).

Micromegas

199

Preliminary Results

Efficient photo detection demands the optimization of several parameters:

- Choice of Gas: affects Photoelectron Extraction Efficiency.
- Choice of Drift field: Affects Photoelectron Collection Efficiency.
- Choice of Hole diameter, Pitch and Thickness: Affect the orthogonal component of the field over the CsI surface, hence affect the photoelectron extraction efficiency.

Rim=0µm

Thickness = 400µm

Optimized parameters:

Hole diameter = 400µm **Pitch = 800µm**

2.0

1.5

E_{Drift} (kV/cm)

A Ne/10% CH4 ---- Ne/5% CH4

Ar/5% CH4

2.5 3.0

. . Ne/5% CF4

In case of a discharge the HV of the non tripping pad is almost unaffected: 2V drop ~4% drop in gain. R ~ 0.5 $G\Omega$ is preserving the non-tripping pads efficient all the time !

Summary

- COMPASS requires excellent hadron identification in challenging conditions,
- ->RICH1 has been upgraded with MPGD based hybrid detectors of single photons.
- 1.4 m² of double THGEM and Micromegas based detector have been produced and installed on COMPASS RICH-1.
- The Preliminary results show that the Hybrid detector sees Cherenkov photons, efficiently!
- This novel technology is paving the way for future developments.

Reference: http://doi.org/10.1016/j.nima.2017.02.013

