Investigation of the Properties of Thick-GEM Photocathodes by Microscopic Scale Measurements with Single Photo-electrons (The Leopard Project : Trieste-Budapest)

> Gergő Hamar for the joint group of S. Dalla Torre, S. S. Dasgupta, G. Hamar, S. Levorato, F. Tessarotto, D. Varga

INFN Trieste Wigner RCP Budapest

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

FUILION LAILA **MPGD** Based **Cherenkov Detectors**

- Gaseous Photon Detectors for Cherenkov detectors
 - Large area at reasonable price
 - CsI cover for UV photon detection
- Advantages vs. MWPC based RICH
 - Reduction of ion back-flow
 - Fast response
 - High rate capability
 - Possibility for MIP suppression
 - No feed-back photons
- PHENIX, COMPASS, ALICE
- Triple GEM, TGEM, TCPD, TGEM+MM in all: GEM-type photoconverting plate
- Efficiency and microstructure?

GEM based Cherenkov D.: Talk by T.Hemmick **COMPASS RICH Hybrid :** Talk by S.Levorato **MIP Suppression : Poster by G.Hamar**

Microstructure of UV Sensitivity on ThickGEM Surface

Holes are definitely blind spots

(no photoconverter material is there inside)

- Highly non-uniform extraction field (high around the holes, lowest in symmetry points)
- Critical symmetry points (and lines)
- Side-effects of MIP suppression ?
- Large range for the geometrical parameters (diameter, pitch, rim, thickness)
- Choise of the filling gas

• Microstructure ... ? \rightarrow Map of response for single photons [simulations ?] RICH2016 G.Hamar - Leopard Ts-Bp

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

Strategy to Examine the Microstructure

- Single photo-electrons PE yield and gain separation
- Focused UV light
- High resolution mapping should be better than 0.1mm!
- Combined (and fast) data acquisition

Targeted topics:

- Optimization (and parametrization) (hole geometry, voltages, gas mixtures, ...)
- Fine tuning for simulation

What could be seen?

seems like a leopard...

Challenges

- Optical system : 20-100 µm spot size
 => 10⁴ 10⁶ points (spectra) for an area
- Single photo-electrons:
 - < 5% PE / event AND 100-1000 PE / point
 - $\Rightarrow 10^4 10^6$ events in each points

Necessary system requirements :

- Efficient focusing of pulsed UV light
- Actuator system (3D) : ~10 μm precision, 10ms response
- Fast ADC : >> 10 kHz
- Combined data acquisition system (ADC and actuator)

Charge Distribution at a Certain Hole

1000

100000 10000 1000

Actuator System

- Stepping motors for all axis
- Good resolution : 2.5 μm
- Direct control
- Mounted upside-down on a support table

Larger (20cm) and faster version became ready recently

G.Hamar - Leopard Ts-Bp

Optical Setup

- Pulsed UV source : UV LED : SETI UVTOP240 peak: 243 nm, widths: 10nm Photo-electrons from gold surface
- Focusing ball lense cover
- Led Driver Unit adjustable oscillator trigger and LED output
- Pinhole (spot size x 2) 150 µm => 70 µm spot Pinhole 30 µm for GEMs
- Quartz window
- Further improvements are still under tests

Data Acquisition : Machine

- Several options tested so far: Camac, PC+LPT
- Recent successfull implementation: RaspberryPi
- Raspberry Pi (is a tiny computer)
 - 700MHz ARM CPU + Broadcom 2835 chip
 - Periferials: USB, HDMI, SD, AV, Audio

GPIO pins (10MHz)

- Low power consumption and low cost
- Raspbian Linux : Debian based OS
- WiFi connection

Data Acquisition : HW + SW

- Special additional board: fits to the GPIO pins
- Parallel-out single ADC (LTC1415)
- **Trigger** reciever and timing (adjustable)
- Signal shaping and amplification (adjustable)
- **Tagging** of rejected triggers
- Direct actuator control

(can be accomodated to any moving controls)

- Software: C,C++ runs on the RPi
- ADC (w DSP), save spectra

RICH2016

- Control 3D table and HV system
- GUI on remote PC (wxWidgets)

Working Tabletop Setup

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

TGEM+MM Hybrid as Basic Setup in Trieste

- To compate THGEMs ,,single THGEM layer" configuration should be used
- Used Hybrid (from photon view) :
 - Quartz window (for UV light)
 - Wire cathode : 100µm / 2mm spacing (along X axis)
 - TGEM in study
 - Bulk micromesh : 45/18 and 128µm for gap (CERN)
 - Padplane : 1D strips of 150/150 μm (alogn Y axis)
- Gas : Ar/CH₄ : 30/70

and Ar/CO_2 for the long runs during the night

ThickGEMs in Study

- Based on the experience of the INFN Trieste group
- Several different TGEMs were sudied to compare: rim, thickness, hole size, production process
- All were gold plated (CsI was not required at this stage)

Target issues:	ThGEM	Hole	Pitch	Thickness	Rim
Uniformity	Name	[µm]	[µm]	[µm]	[µm]
	M1-III	400	800	400	0
Gain distribution	DESTRO-I	400	800	400	5
Critical points Charge up	C3HR-II	400	800	400	50
	M2.4-G	400	800	600	0
	M2.1-II	300	800	400	0

TGEM+MM Hybrid with the Leopard Scan System

DAQ (RapberryPi with LeopardRpiBoard + Motor driver)

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

Data and Quantities

- UV light focused onto a 50 µm spot (MP)
- Single photo-electron spectrum in every MP

RICH2016

Data and Quantities

• UV light focused onto a 50 µm spot (MP)

RICH2016

- Single photo-electron spectrum in every MP
- Compute photo-electron yield and gain for every MP

Data and Quantities

- UV light focused onto a 50 µm spot (MP)
- Single photo-electron spectrum in every MP
- Compute photo-electron yield and gain for every MP
- Search for holes, compute "hole-level" quantities
- Default plots: Yield map Gain map Hole-gain distr.

Setting the Focus

- Finetuning the focal distance with measuremets
- 1+1 (or 2+1) dimension scans

RICH2016

 \rightarrow select the sharpest slice (image)

Focal scan 1+1 D through 3 holes

The Charge-Up Effect

- Charge up : an <u>area</u> or a **single hole**
- The **decrease of gain** has been seen
- Significant increase of the photon yield has been measured (Time constant is different from the one in the change of gain)
- Eliminating the charge-up effects:
 Before the scan the area was shone with high luminosity

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

Gain Uniformity Studies

- Long runs for statistics on large areas
- Evaluation of the "hole-gain" distribution
- Comparative test for every THGEMs

	ThGEM	Applied	Standard	Number of
	Name	averge gain	deviation	used holes
	M1-III	39900	12.0%	317
	DESTRO-I	24100	11.0%	194
	C3HR-II	47100	21.6%	247
	M2.4-G	76200	21.2%	268
G.Ha	M2.1-II	24000	8.3%	323

Avalanche Size

- Does the size of the electron avalanche depend on the point the electron enters into the hole ?
- Leopard :

Place of PE emission <=?=> point of entering

- Diffusion ...
- Preliminary results with DESTO-I are compatible with a flat distribution (?)

Distance from the center of the hole [mm]

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

Effects of the Drift Field

- Optimization of drift field could be crucial
 - MIP suppression needs reversed drift field
 - PHENIX HBD : close to zero field
 - For the critical symmetry points : non-zero normal drift is needed
- With the Leopard setup the point-by-point and integrated photo-electron yields can be examined

Drift Field Scan

"Critical Line" Scan

- Critical symmetry points and symmetry lines are most the effected by the drift field
- Dependance in the crytical point is measurable (Focused light + HV scan)
- Systematic studies on these kind of points with comparision to the standard points ?
 - \rightarrow 1 dimension scan along a line (with several voltage settings)

Critical Line Scan : Samples

- Critical points are clearly visible
- Evolution as expected from former measurements

33

Critical Line vs. Drift

Drift field scan along the critical line

Rl

TGEM Voltage and Yield

- Higher U_{TGEM} means higher field on the top
- What is the minimal necessary voltage (to have max yield without sparks)

Outline

- Micro-pattern RICH
- ThickGEM microstucture
- The Leopard system
- Trieste-Budapest setup
- Data and analysis
- Gain uniformity
- Drift field effects
- Summary

Summary

Leopard System

- Examine microstructure of MPGD
- Realized as table-top setup
- Yield+Gain map, Hole-level behaviour → Simulations
- Optimization : Detailed Studies on ThickGEMs
 - Hole-gain distribution, comparision of different geometries
 - Optimization methods for voltage settings, Critical point/line behaviour
- Applicability for other gaseous devices as well
- Characterization → Novel device for quality assurance
- Upgrades and steps towards a large are device

Extra slides

GAIN

Optimal Drift Zero Drift

YIELD

1660V

1790V

1850V

13.Feb.2014.

40

Long runs during nights with Ar/CO₂

Normal GEM Foil

Speed : 20 min run

DAQ rate : 120 kHz achieved with 99.5 % events accepted

RICH2016

Fast 2D Map (20 minutes)

43

Gain sharing and separation

- Single TGEM examination
- Underlying structure (post amplification stage) is measureable via shining through the holes

G.Hamar - Leopard Ts-Bp